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mS. ASSTRACT

Film-grain noise is a term describing the intrinsic noise produced by a phc.o-
graphic emulsion during the process of recording an image on film. Although film-

grain noise has been recently considered within the field of image processing, the

nature of the noise is still somewhat misunderstood.
One goal of this study has been to use the theoretical and experimental results

on film characteristics obtained by photographic scientists in order to define film-
grain noise within the context of estimation theory. A detailed model for the

overall photographic imaging system is presented. There are linear blurring effects

at the initial and the final segments of this model 'to account for various optical

and chemical degradations. The middle segment of the model .irepresents signal

dependence effects of film-grain noise and includes a nonlinear noise term. The

accuracy of this model is tested by simulating images according to it and com-

paring the results to images of similar targets that were actually recorded on film.
These comparisons point out that the model is a good representation of the photo-
graphic imaging system.

T The restoration of images degraded by film-grain noise is considered in two

different contexts - estimation theory and detection theory. Under the topic of

stimation, a discrete Wiener filter is developed which explicitly allows for the
signal-dependence of the noise. The filter adaptively alters its characteristics

& based on nonstationary first order statistics of an image. This filter i shown to

'" FORMA

DD INovr1473 ______________

-v... . ...-
4

..



14.KEY WOROS LINK A LINK 9 LINK U.

ROLE W? ROLE WT ROLE WT
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In the case of extremely low contrast images

digitized by a very small aperture, film-grain
oise is so severe that conventional statistical

resotration techniques have little effect. For
me in this situation a heuristic algorithm is devel1

oped which incorporates some of the vision pro-
erties of the human observer. Bayesian de-
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ABSTRACT

Film-grain noise is a term describing the intrinsic noise

produced by a photographic emulsion during the process of recording

an image on film. Although film-grain noise has been recently

considered within the field of image processing, the nature of the

noise is still somewhat misunderstood.

One goal of this study has been to use the theoretical and experi-

mental results on film characteristics obtained by photographic

scientists in order to define film-grain noise within the context of

estimation theory. A detailed model for the overall photographic

imaging system is presented. There are linear blurring effects at

the initial and the final segments of this model to account for various

optical and chemical degradations. rhe middle segment of the model

represents signal dependence effects of film-grain noise and includes

a nonlinear noise term. 'The accuracy of this model is tested by

simulating images according to it and comparing the results to

images of similar targets that were actually recorded on film.

[hese comparisons point out that the model is a good representation

of the photographic imaging system.

rhe restoration of images degraded by film-grain noise is

considered in two different contexts - estimation theory and
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detection theory. Under the topic of estimation, a discrete Wiener

filter is developed which explicitly allows for the signal-dependence

of the noise. The filter adaptively alters its characteristics based

on nonstationary first order statistics of an image. rhis filter is

shown to have an advantage over the conventional Wiener filter.

In the case of extremely low contrast images digitized by a

very small aperture, film-grain noise is so severe that conventional

statistical restoration techniques have little effect. For use in this

situation a heuristic algorithm is developed which incorporates some

of the vision properties of the human observer. Bayesian detection

theory is used to justify the procedure and to provide some insight

into its use. This algorithm also explicitly includes the signal

dependence of the noise and has the capability of greatly outperform-

ing the human observer in locating objects corrupted by very severe

noise.

Experimental results for modeling, the adaptive estimation

filter and the Bayesian detection algorithm are presented.
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Chapter 1

INTRODUCTION

Image restoration and enhancement are terms used to describe

methods of removing different types of degradations in imaging

systems. With the advent and improvement of digital computers,

investigators have concentrated for the past decade on digital

techniques to deal with the large quantities of pictorial data in

image processing.

'The degradations that an imaging system imposes on a picture

are often of two types. rhere are degradations that can be described

by smoothing operations, including effects due to the finite resolu-

tion of sensors and various optical and chemical effects. rhere are

also degradations due to measurement errors, and these are usually

referred to as noise. Film-grain noise is one such disturbance.

The goal of this study is to unite some results of photographic

scientists in modeling film-grain noise with some recent develop-

ments in the field of digital image processing to improve the quality

of images degraded by severe film-grain noise. In order to make

this study useful to workers both in the fields of digital image

processing and photographic science, a summary of relevant past

results is presented for each topic.



The material presented here is divided into three major topics:

modeling, estimation and detection. rhe following is an outline of

this study and a summary of the research contributions in each. In

Chapter 1 we examine the problem of film-grain noise by considering

the physical structure of photographic film. In particular we discuss

various factors effective film-grain noise during the exposure and

development.

rhe mathematical modeling of film-grain noise is the subject

of Chapter 2. First we review some simple models suggested by

different researchers. We then use published experimental results

on film characteristics to investigate the functional form of the

standard deviation of the noise. The trade-off between linear model-

ing with signal dependent noise and nonlinear modeling with signal-

independent noise is also discussed in this chapter. A subjective

evaluation procedure for various models is suggested and the

chapter concludes with a detailed model flexible enough to accomo-

date different degradations imposed by an imaging system.

Chapter 3 discusses restoration of film-grain noise degraded

images under the topic of estimation. A discrete linear minimum

mean square error filter is developed which explicitly allows for the

signal-dependence of the noise. This filter adaptively alters its

characteristics based on the non-stationary first order statistics of

2
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the image. This filter is shown to have an advantage over the

conventional Wiener filter.

Chapters 4 and 5 consider the detection of extremely low

contrast images which have been almost completely obliterated by

film-grain noise. In Chapter 4 we provide mathematical justification

for an algorithm called "noise cheating" previously used by other

researchers. In Chapter 5 we first improve on "noise cheating"

to make it applicable to a broader class of images and to utilize some

of the signal-dependent effects from our model. We also develop a

more versatile Bayesian detection scheme which yields superior

results and extends the usefulness of the technique.

1.1 Structure of Photographic Film

Photographic film is probably the most commonly used device

for detecting or recording light. Let us consider a cross section of

a typical commercial film for use in ordinary cameras. As shown

in the schematic drawing of Fig. 1.1-1, film consists of an emulsion

supported on a firm base. The emulsion is composed of a clear

transparent gelatin containing a suspension of silver halide particles.

These particles, or film grains as they are called, are photo

sensitive and typically consist of a lattice of silver ions and halide

ions. Upon exposure to light, the state of some of these grains will

change in such a manner as to record the spatial distribution of the

3
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exposing light. The process of image formation basically involves

two separate steps:

1. Formation of Latent Image. When exposed to light, photons

of sufficient energy will be absorbed by the silver halide, thus raising

an electron from the valence band to the conduction band. Assuming

the halide crystal was initially electrically neutral, the elevation of

the electron to the conduction band must simultaneously produce a

positively charge entity--a positive hole. At this point one of two

events may occur. Either the free and mobile electron may

recombine with a positive hole to reproduce a neutral crystal plus

some released energy or the electron may combine with a silver ion

to form a quasi-stable silver atom. rhe occurrence of these two

events is probabilistic and as we shall see later this randomness is

indeed one of the causes of film-grain noise.

If a sufficient number of photons are absorbed by a grain and

they in turn result in silver atoms, these atoms form tiny silver

specks called development centers on the surface of the exposed grain

as shown in Fig. 1.1-2. The size of these specks are larger on the

grains that were heavily exposed and much smaller on the grains that

did not absorb enough photons. Naturally there are crystals that are

completely left unchanged because they were not exposed or were

exposed very little. Photographic scientists use the term latent

image to describe the film at this point. Although no visible image
5





has yet been formed, the state of some of the halide grains has been

changed as to retain the spatial distribution of the exposing light.

These grains with development centers will render a visible image in

the second step of image formation process.

2. Development of Latent Image. To produce a visible image,

the exposed film is immersed in a developer solution, The developer

acts as a reducing agent and completely changes the halide crystals

with stable development centers to opaque metallic silver grains.

rhe rate or the probability that they are converted, however, depends

on the size and the number of these silver specks. It is believed

that if three to six silver atoms or more are formed during the

exposure, then a stable development center is formed. Undeveloped

crystals are washed away into the developer solution leaving clear

transparent gelatin in their place.

The question that arises naturally is why photographs appear

continuous when the congregations of metallic silver grains are

scattered randomly within a clear gelatin. The answer clearly is that

photographs do indeed appear as random distribution of opaque grains

within a transparent gelatin if they are viewed under sufficient magni-

fications as shown in Fig. 1. 1-3. However since the human visual

system has a limited resolving capability and film grains are small

in size, (see Table 1. 1-1), regions in the film consisting of a

i7





considerable number of opaque metallic silver grains appear to be a

homogeneous shade of black. On the other hand, areas where there

are no grains or where the grains are very sparse appear to be

transpa rent.

As discussed earlier in this section, film is a device for record-

ing light. Indeed, when one looks at a developed photograph, one

gets a subjective feeling for the spatial distribution of the exposing

light. Black regions on the photograph, for example, indicate a high

intensity of the exposing light. In order to establish some quantitative

measure of thc exposing light or some parameter such as its intensity

let us view the film as a system and define an input, output and a

transfer function.
Average Average

Plate or Film Diam. (pm.) Area W%

High-resolution film 0. 048 0.00188

Motion -picture -positive

film .30 .07

Positive-type film . 63 . 31

Fine-grain roll film .79 .49
Portrait film . 88 . 61
High-speed roll film 1.09 .93

X-ray film 1.71 2.30

Table 1. 1-1. Grain size for various type of films. 121

1. 2 Film Viewed as a System

'The input to the film is the incident light, or more generally, the

exposure E defined as

9



where I is the intensity of the incident light and t is the exposure time.

rhe most common quantitative measures of the output of a photo-

graphic film are either optical density or transmittance. For a

region R in a developed film, transmittance is measured in the

following manner: the region is illuminated with a light of constant

intensity I . and then the intensity of the light transmitted to the other

side of the film through this region is measured. Denoting this

intensity by It, the transmittance value for this region is defined as

r

and optical density is defined as

D =-log1 0 T log1 0 2~(.23

When we look at a photograph, we perceive a spatial variation

in incident light intensity. Photographic film converts this

variation by appropriate exposure and development to spatial vari-

ations in optical density or transmittance of the film. From eqs.

(1.2 -Z) and (1. 2 -3) we note that asince I. i I It optical density is a

nonnegative quantity and transmittance T varies between 0. 0 and

1. 0. As we shall see in Chapter 2, the measured optical density for a

region is directly proportional to the mass of metallic silver deposited

in that region during the process of exposure and development.

10



Suppose the incident light exposing a particular region R has a high

intensity. Most of the halide grains within this region will be

transformed to metallic silver grains. Now, since silver grains are

opaque, in the process of measuring the optical density for this

region the transmitted intensity It of eq. (1.2-3) will be much less

than intensity I. Therefore as shown by eq. (1.2-3), a large value

for optical density will be recorded. Thus high optical density for a

region corresponds to a large mass of silver in that region which

in turn is indicative of high intensity of the exposing light.

So far in this section we have established quantitative input and

output for a film. What remains to be discussed is a transfer function

linking the input and the output together. Around 1900, two photo-

graphic scientists, Hurter and Driffield, performed a series of

experiments. They discovered that in macroscopik rcgions, the

logarithm of the exposure E (input to the photographic system) and

the optical density (output of the photographic system) are related

through a function which has become known as the Hurter and

Driffield (H and D) curve or D-log E characteristic curve. A typical

H and D curve is shown in Fig. 1.2-1.

If the film is operated in the monotonic region of this curve, a

measured optical density would uniquely determine the input exposure,

at least in the macroscopic regions for which this curve is obtained.

* ii
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rhus by measuring optical density in various regions of a developed

film one can determine the spatial distribution of the exposing light.

However, if we measure the optical density of a developed film

not in macroscopic regions but in microscopic regions, we note that

the measured optical density does not relate to the input exposure in a

straightforward manner and film behaves more like a stochastic

system. This is what we will examine in the next secLion.

1. 3 Film-Grain Noise

Suppose we expose a film with light having absolutely no apatial

variation, or in other words, perfectly constant intensity. If this

film is viewed with a naked eye after careful development we see that

a constant shade of gray has been registered across the film. So far

everything is according to expectations; an input with a constant level

has resulted in a subjectively constant output. If we measure optical

density in various macroscopic regions, perhaps two or three

millimeters in diameter, as predicted by the H and D curve, the

same value for the optical density is measured in the various regions.

However, if we use a microdensitometer with a small aperture

of only a few microns in diameter to measure optical density for

several microscopic regions in the film, we note that different

readings are obtained for different regions even though the exposing

light for all of the regions was the same. Considering photographic

film as a space-invariant system, these fluctuations in the output 13



from one region to another, when in fact the input in all of the regions

is the same, indicates that the system is not noise free. rhere are

several reasons for this phenomenon, some of which are discussed

below:

1. As discussed in section 1. 1, photographic film is composed

of microscopic silver grains and thus is inherently a discrete

medium. It should be expected, therefore, that under sufficient

magnification it would appear inhomogeneous. In fact, if transmit-

tance T defined in eq. (1.2-2) could be measured at any point (x,y)

it would be either zero or one depending on whether the point was

covered by an opaque silver grain(s) or not. rherefore film can be

taken to be a binary medium on a microscopic scale.

2. Even though the incident light may be spatially uniform over

the extent of the film, from a quantum viewpoint the number of

photons arriving at the surface of the film per unit time is not con-

stant over the entire surface but has a poisson distrubution. Thus,

each silver halide grain in the film is struck with a different

number of photons and therefore some have more chance to reduce to

metallic silver during the development. This effect is particularly

significant when the incident light is of a very low intensity.

3. As discussed in section 1. 1, both the formation of the latent

image and its development are probabilistic in nature. rwo seem-

ingly identical silver halide grains struck with the same number of
14

w- ~-- ~ ~ -



photons react differently. One might eventually be converted to a

silver grain whereas the other might not.

4. It has been established that silver grains for a uniformly

exposed and developed film are randomly scattered throughout the

film [3]. rheir distribution is nearly binomial and can be approxi-

mated by poisson if the grains are assumed indefinitely small. If

a microdensitometer is used to scan the film, the number of grains

that fall within the area covered by the scanning aperture is different

at different locations. Since measured optical density for a region

is directly proportional to the mass of metallic silver deposited in

that region, the randomness associated with the number of grains that

fall within various regions contributes to randomness in measured

optical density.

5. It is practically impossible to make an emulsion with

constant size grains. rhus the variation in grain size will also

affect measured optical density due to relationship between optical

density and the mass of silver.

In summary, the fluctuations in the number, size and configura-

tion of grains from one small subregion to the next causes corres-

ponding fluctuations in the optical density (or transmittance) of

microscopic regions in a uniformly exposed and developed film, and

this produces the noise in the photographic system.

15



When this noise is measured objectively by various types of

instrumentation, it is called granularity, whereas the subjective

impression of film noise in a photographic enlargement is call' '1

graininess.
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Chapter 2

MODELING

One of the aims of science is to understand the nature of the real

world based on simplified artificial models. The laws and relation-

ships that evolve from these idealized models are approximations.

In the case of most real world processes, these idealized models

must be altered or supplemented to reflect the complex nature of the

process. rhe tradeoff is usually between the utility of the simplified

models and the accuracy of the more complex ones.

As briefly reviewed in the first chapter, the formation of an

image on photographic film is a highly complex optical and chemical

process. Modeling this process with a high degree of accuracy, if

at all possible, often results in models that are too complex and

unsuitable for use in any subsequent mathematical processing. On

the other hand, the reliability of restoration techniques such as

estimation or detection is directly related to the degree by which the

underlying mathematical model simulates the actual physical process.

therefore, oversimplification of the nodel makes the subsequent

restoration technique very sub-optimal.

With these thoughts in mind, the goal of this chapter is to

present a detailed model for the overall imaging system which is

4
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reasonably accurate and yet mathematically tractable.

In section 2. 1 we review some simplified models which give us

a general expression for the standard deviation of noise of the photo-

graphic system. In section 2. 2 we see how various quantities, such

as the standard deviation, can be used as an objective measure of

graininess of films. Some experimental results are analyzed in

section 2. 3 and this analysis leads to a more accurate form for the

standard deviation. rhe probability distribution of optical density is

the subject of section 2.4. Using the results of the first four sections,

in section 2. 5 we obtain some models for the optical density in the

context of estimation theory. In section 2. 6 we discuss the tradeoff

between various models. A procedure for the evaluation of various

mathematical models of the photographic process is outlined in section

2. 7, and a detailed model for the imaging system is suggested in

section 2. 8.

2. 1 Standard Deviation of Film-Grain Noise

In 1913 NUt~ing gave a simplified model for a developed photo-

graphic layer, expression optical density of the image in terms of the

number and size of developed grains [11. Suppose a film is exposed

to a spatially uniform light and then developed. Nutting assumed that

the developcd emulsion layer may be divided into k elementary levels

each about one grain thick as shown in Fig. 2. 1- 1. rhe grains are



I4
- levelI

- - - - - level 2

Developed grainsT

Figure 2. 1 -1. A simplified model of the developed
photographic emulsion used by Nutting.
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assumed randomly distributed within each level with a negligible

degree of overlap. For the above model Nutting showed [ZJ that the

optical density D can be written as

D = . 4 3 na(.l
A

where a is the size of the developed grains (which is taken to be the

same for all the grains), A is the size of the scanning aperture used

to measure the optical density D and n is the total number of grains

that fall within the aperture area at any given point.

Despite the many simplifying assumptions that were made in

deriving eq. (2. 1- 1), Nutting's model has proved of lasting benefit

and this equation and variations of it are still widely used.

As mentioned in chapter 1, the grains in a uniformly exposed and

developed film are randomly distributed within the gelatin. There-

fore n in eq. (2. 1 -1) is a random variable. This randomness in turn

gives rise to fluctuations in the measured optical density D of the

uniformly exposed film. As we said earlier it is this fluctuation in

the optical density of a uniformly exposed and developed film that

accounts for the noisy nature of photographic film as a measuring

device for light. The standard deviation of D may be taken as a

measure of this noise and can be calculated from eq. (Z. 1-1). Letting

E be the ensemble average operator we have:
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E(D) = .43 E(n).a (2.1-2)
A

and 2

yD 
(Z. 1 -3)

D A
2 2

where aD and a are variances of D and n respectively. The distribu-
1D n a

tion of n can be modeled by a binomial distribution [31 or, if - is
A

small, by a poisson distribution. Since the first two moments of the

poisson distribution are equal, we have E(n) = n , and using this fact
n

in the above two equations we get

aD = (D) 2  (2.1-4)

where D = E(D). Equation (2. 1-4) indicates that the fluctuation in

optical density is dependent on three main factors:

a) The fluctuation is inversely proportional to the scanning

aperture used in measuring D; it increases as the aperture

decreases.

b) As seen in Table 1. 1-1 the mean grain size varies for

various films. Equation (2. 1-4) points out that the fluctua-

tion in the optical density is greater in high speed films

which utilize large grains and is smaller in high resolution

films which employ smaller grains.

c) The variation in density is dependent on the mean density D.

Thus if two frames of a film are exposed uniformly, one with

21

al



exposure F 1 and the other with exposure E2 , and these

frames are then scanned with the same size aperture, the

fluctuation in the density of the frame exposed to the higher

exposure (which is thus developed to a higher mean density)

is greater. Some typical values for o D are shown in [able

2.1-1.

As we will see in the next section, 0 can be used as a measureD

of the graininess of a film.

2.2 Objective Measures of Graininess

Graininess is the impression of inhomogenity in a magnified

image. It has been of primary importance to the photographic scien-

tists to establish an objective measure to rank various types of films

according to their subjective graininess.

Material a(D)

Tri-X Aerecon Type 8403 0.048
Plus-X Aerecon Type 8401 0.034
Panatomic-X Aerial Type 3400 (Estar thin base) 0.020
Kodachrome 11 for daylight 0.012
Special high-definition aerial film (gray base) Type SO-243 0.0074
High-resolution plate 0.0025

Obtained for recommended development and under the following
scanning conditions: Net density of sample above support = 1.0;
circular scanning-aperture diameter = 48 Pm.

rable 2.1-1. Standard deviation of optical density for typical
Kodak films and plates [4].
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Bricout [51 was among the first to suggest exposing various

types of films to a uniform exposure and then using o(D), described

in eq. (Z. 1-4), as an objective measure of their graininess.

Trying to establish a single experimental quantity to measure

the graininess of photographic materials, Selwyn [61 in 1935

published a paper in which he hypothesized that the probability

P(D, AD) that an area A, chosen at random on a uniformly exposed

film, would have a density different from the mean density of the

film by an amount in the range of ED, D+AD1, is a function of A, D,

AD and a constant G which he called the "graininess" constant. He

theorized that P(D, AD) is proportional to AD for vanishing by small

values of AD so that

P(D,,AD) = f(G,D,A)-AD (2.2-.)

where f is a function to be determined. Following this hypothesis and

using dimensional theory he showed the functional form of f to be:

A =(D2A/G z )
P(D, AD) = e .AD. (2.2-2)

iTG

In the derivation of the above equation he assumed the size of the

grains to be sufficiently small with respect to A so that adjacent

nonoverlapping areas are independent.

Equation (2.2-2) suggests that the optical density has a Gaussian
2" G

distribution with variance 2- The relationship
2A 23



G D = (2A) 2 .7 D  (2.2-3)

has become known as Selwyn's law and G is called the granularity or

Selwyn coefficient. This coefficient was suggested as an objective

measure of graininess. In eq. (2.2-3), the subscript on G is included

to emphasize that the relationship defined through this equation makes

sense only for a given mean density. As predicted by eq. (2. 1-4) a

change in the mean density results in a change in CD which in turn

alters the value of the constant G.

2. 3 A More Correct Version of the Standard Deviation

After Selwyn introduced the notion of granularity constant,

many workers within the next twenty years performed a series of

experiments in connection with Selwyn's law [51, [71 , [81 . Their

conclusions were quite varied with various experimenters reporting

the exponent in the eq. (2.2-3) to be anywhere in the range of 0.265-

0.5. However, due to the unreliability of the measuring devices,

particularly the microdensitometers, most of the experimental

results of this period are of questionable value.

Finally, Higgins and Stultz [91, armed with the results of

previous researchers and improved measuring apparatus set out to

experimentally examine Selwyn's law. Their experiment resulted in a

set of data published in 1959. In this experiment they examined four

types of films ranging from high speed Kodak Royal-X to fine-grained
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Eastman Fine Grain Release Positive film.

Six samples of each of the four films were uniformly exposed

and developed to six different optical density levels. rhen each of the

samples were scanned with seven different apertures ranging in size

from 7. 25 im to 384 Ilm.in diameter. The standard deviation 0D was

calculated for the data obtained with each of the seven apertures and

values of G were then tabulated using eq. (2.2-3).

The results of Higgins and Stultz experiments are summarized

in Figs. 2. 3-1 to 2.3-4. In each figure, G is plotted against the

square root of the scanning aperture area for all of the six optical

density levels. From eq. (2.2-3) it is clear that Selwyn's law pre-

dicts that the graphs in these figures should be horizontal lines for

each given density. Higgins and Stultz concluded that their data

verified Selwyn's law and the deviation from horizontal lines were

attributed to measuring errors and the impracticality of producing

truly uniformly exposed films.

From Figs. 2.3-1 to 2.3-4 it is apparent that G is not a constant

for a very wide range of apertures. rhe failure appears to be

consistently pronounced at large aperture sizes. Furthermore,

in the case of coarse-grained Royal-X film, the smallest aperture

seems to be outside the range foi which Selwyn's law holds. This

may be expected because Selwyn assumes grain sizes to be much

sma!ler than the scanning aperture in the deviation of eq. (2.2-2).
25
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The data obtained by Higgins and Stultz can also be used to verify

the exponent of D in eq. (2. 1 -4), although Higgins and Stultz did not

do so in their paper. To do this we rewrite eq. (2. 1-4) in the more

general form

Pio D  -(P (Z.3-1)
0D k (D)

where

k - (2.3-2)
k1

and

k =ZA (2. 3-3)

k = /.-3ea (2.3-4)

In the future, throughout this study we will refer to k as the scanning

constant. As shown in equations (2. 3-3) and (2. 3-4), the value of k

depends on the constant k1 by the aperture used for scanning and

depends on the grain size constant k2 by the type of film used.

Combining equations (2.2-3) and (2. 3-1) we get

G = J7 • kZ . (D)P. (2.3-5)

raking the logarithm of both sides of the above equation we have

.n G = P. An D+ C (Z. 3-6)

where

C = An(/2k 2 ). (2.3-7)

30
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Equation (2.3-6) is known as the Siedentopf [10] law. According

to eq. (2. 3-6) if several frames of a given film are uniformly exposed

and developed, each to a different density, and the granularity cons-

tant G for each frame is calculated, then the plot of Ln G vs £n D

should follow a straight line with slope P.

To experimentally test these results, we used the Higgins and

Stultz data to see if the slope of such a line would be I as predicted

by eq. (2. 1-4). In Figs. (2. 3-1) to (2. 3-4) at each given density

seven values for G are given one for each aperture size. An average

of these seven values was obtained and the logarithm of these averages

were plotted against the logarithm of the densities. Using least

squares techniques, a straight line was fit to the data. The results

are shown by solid lines in Figs. 2. 3-5 to 2. 3-8. A fair degree of

deviation from the straight line is observed in Figs. 2. 3-7 and 2. 3-8,

and this is expected considering the deviation from horizontal lines in

Figs. 2.3-3 and 2.3-4.

Next a second set of lines were obtained by plotting the loga-

rithm of the densities vs. the logarithm of the average values for G

taken not over the entire range of the apertures used in Figs. 2. 3-1

to 2. 3-4 but only over the three smallest apertures. This was done

because the lines in Figs. 2.3-1 to 2.3-4 are nearly horizontal over

the smallest three apertures. These new plots are shown by broken

lines in Figs. 2. 3-5 to 2. 3-8. Note that the data now follows a

31& _ _ _ _ _
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straight line very closely in each case. The slopes and intercept

points of these lines corresponding to constants P and C, respectively,

in eq. (2. 3-6) along with the grain size constant k 2 were calculated

and are listed in the above figures.

These plots demonstrate that for a reasonable range of apertures,

the standard deviation CT is of the general form given in eq. (2. 3 -1).

The value of exponent P however appears to be less than 0. 5, which

was suggested by eq. (Z. 1-4) through Nutting's model, and is more

likely in the range 0. 3-0.4. Therefore a more reasonably form for

a0 is

k k2  - 1/3 238

D k: (D)

where k 2 depends on the type of film and is the range 0.45-2. 36 for

the films used in the Higgins and Stultz study.

Equation (2. 1-4) in which exponent of D is shown to be was

derived based on the assumption that the grains in the developed

emulsion all have the same size. Haugh [ill allowed the grain size

to follow a distribution and theoretically showed that the exponent P

of eq. (2.3-1) is of the form

P = 1-Y (2. 3-9)

where Y is a positive constant. rhis then is in agreement with the

experimental results just discussed and another justification for

taking
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-1/3 (.-0
c = k (D) (. -0

as the expression for the standard deviation(TD

2.4 Distribution of the Optical Density

In previous sections of this chapter we noted that a uniformly

exposed and developed film subjectively appears to consist of a

uniform shade of gray. However, in examining microscopic regions,

one finds that the optical density for these regions fluctuates about

the mean density of the film and the standard deviation of the fluc-

tuation has the form given in eq. (2. 3-10). In this section we investi-

gate the probability distribution of these fluctuations.

The probability distribution of optical density in microscopic

regions of a uniformly exposed and developed film has been studied by

photographic scientists for a long time. Most researchers have

reported Gaussian or near Gaussian distributions. Some of these

reports were made by Bricout t51, Van Kreveld [121 and Selwyn [13].

On the other hand, some other investigators such as Debot [141 and

Berwart [151 reported some skewness and asymmetry in their

distribution curves. Unfortunately, most of these experiments were

done 30 to 40 years ago when accurate instruments were not available.

We now discuss the assumption of Gaussianity and show that it should

be accepted with some degree of reservation.

In chapter 1, the optical density for a region R in a developed
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film was defined as

It
D = -logl 0  (2.4-1)

where It was the intensity of the light transmitted through region R

when illuminated by a light of constant intensity I.. Theoretically I
1t

can be zero, corresponding to infiri te optical density. However, as

shown in characteristic curve of Fig. 1. Z-1, all films reach a

saturation point beyond which any increase in exposure will not yield

higher density. In practice densities above 2. 5 are seldom en-

countered for ordinary photographic films.

In eq. (2.4-1), I. is always greater or equal to It . Therefore,1

the optical density D is a nonnegative quantity. One can therefore

assume that observed values of optical density are approximately in

the range of 0. 0-2. 5. We now will examine assumptions for

Gaussianity and standard deviation as given by eq. (2. 3-10) to

determine if they are consistent within this density range. We first

examine the upper end of this range by assuming a film to be

uniformly expt-sed and developed to a very high density. Equation

(2. 3-10) suggests that the standard deviation monotonically increases

with the mean density. However, when a film is thoroughly exposed,

almost all the halide grains will be transformed to silver grains and

the film will develop to an almost uniformly opaque material with not

much deviation from the mean density. rherefore it appears that 3838
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above a certain density eq. (2.3-10) is not valid.

As evident from eq. (2.4-1), measuring optical density by a

microdensitometer or other measuring devices, requires measuring

It . If the film is heavily exposed, It will be very small and recording

It would become exceedingly difficult due to the noise in the measur-

ing device. For this reason it has been difficult to obtain accurate

data for a film developed to a very high mean density.

Considering the lower end of the density range and keeping in

mind that density is nonnegative, we examine the following example.

Suppose a uniformly exposed Kodak Pitnatomic-X film is scanned witn

an aperture of size 10 pm. in diameter. According to Fig. 2.3-7,

the grain size constant for this film is approximately 1. 2. Thus the

standard deviation of the optical density fluctuation when this film is

scanned with the above aperture is given by eq. (2. 3-8) and is

D =.12(D) 1 / 3 . (2.4-2)

The smallest mean density 5 about which density fluctuation

can be Gaussian with standard deviation of the form given by eq.

(2. 4-2) has to be at least 3o D above zero so that negative values for

the optical density have a very small probability. From. eq. (2.4-2)

we see that this density is approximately D = 0. 216, corresponding

to a standard deviation of aD = 0. 072. Figure 2 .4-la shows such a

distribution. This figure and eq. (2.4-2) point out that the distribution

39
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D=0.216

3 c(a)

D0.63

3 D

(b)

Figure 2. 4- 1. Distribution of optical density for small
values of mean density D.
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of the optical density for a uniformly exposed Panatomic-X film

scanned with an aperture of size 10 pm. is either not Gaussian or

does not have standard deviation of the form given by eq. (2.4-Z),

when the mean density D is in the range [0.0-0. 2161.

rhis range will be even wider if a smaller aperture is used for

the scanning. If, for example, the diameter of the scanning aperture

is only 5 pm., then as shown in Fig. 2.4-ib, the smallest mean

density for which D-3a D is nonnegative is 0. 63. Using the same

argument as above, for this size aperture the density distribution will

be non-Gaussian if the mean density is in the range [0. 0, 0. 631

If the aperture size is decreased still further then the ratio

a/A of the grain size to aperture size will not be small enough for

either eq. (2.2-2) or eq. (2. 3-8) to hold and the density distribution

will not be Gaussian in any range.

Various researchers [141 -t151 have reported that the density

distribution at very low levels is skewed. Thus one might model the

distribution as a Rayleigh distribution up to some point and by a

Gaussian distribution beyond this point. The point would depend on

the type of film and the scanning aperture size.

If this choice of modeling appears unattractive because two

different distributions are involved, then one might consider modeling

by a Rician distribution. The Rician distribution resembles a

Rayleigh distribution for a mean close to zero and approaches a 41
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Gaussian distribution as the mean increases [161.

In the early days of granularity studies only 50-100 points were

used for calculating the sample standard deviation as well as density

distribution due to lack of digital computers and accurate measuring

devices. Later on, as many as 1000 points were considered

although this still might not have been sufficient to obtain accurate

results.

Since those early days, however, the accuracy of measuring

devices has been considerably improved. Due to this fact, along

with the availability of digital computers,quite a bit can be gained by

a more thorough study of the distribution of optical density. This

task,however, is not undertaken in this study. In most cases we

assume the distribution to be Gaussian.

2. 5 A Model for Optical Density in Context of Estimation rheory

As noted before, many of the earlier studies on photographic

film were performed about 1900. Most of these studies were done by

photographic scientists whose primary goal was analyzing different

films and establishing a quantitative measure ranking different

emulsions according to their subjective grainy appearance.

Research in the area of film-grain noise, its nature and

modeling, reached its height during the late forties to mid-sixties.

During this period photographic scientists left a vast volume of

publications often resulting in contradictory findings. Unfortunately,
42



in many of these papers the mathematical notions of linearity and

signal dependence are used either too loosely or interchangeably.

One goal of this study is to use the theoretical and experimental

results on film characteristics obtained by photographic scientists in

order to define film-grain noise within the contexts of estimation

theory. It is hoped that these models will provide a stepping stone

for the eventual restoration of the degraded image.

Earlier in this chapter we noted that film can be viewed as a

system in which exposure is the input, optical density is an output

and the characteristic function of the film is the transfer function

relating the input and the output in macroscopic regions. Thus the

optical density in macroscopic regions of a uniformly exposed film

can be written as

D =g(E) (.51

where E is a spatially uniform input exposure. g is the characteristic

function of the film and D ais the optical density registered on the

film.

As described in section 1. 3, the optical density of a uniformly

exposed film examined in very small regions of only a few microns

in diameter fluctuates about D., with the fluctuation being near

Gaussian with standard deviation of the form given in eq. (2. 3-10).

rhus we can write
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Do = D +n
S

(2. 3-5)

(neN(O, k 2 (D)2/3)

where N(O, 1) is the zero mean, unit variance Gaussian density. In

the above equation D is the density registered in microscopic

regions on film and n is the noise of the photographic film, taken to

be a zero-mean Gaussian random variable with standard deviation of

k( ) / 3 . Equation (2. 5-2) implies that D o is Gaussian distributed

1 1/3
with mean D and standard deviation k(D/ ) and statistically

matches the measured characteristics of a uniformly exposed film in

the first two moments.

While uniformly exposed films are very helpful in studying the

statistics of film-grain noise, rnst images of interest are consider-

ably different. We now consider expco-"ires with spatial variations

and see if the model of eq. (2. 5-2) also describes the optical density

of nonuniformly exposed films.

Let E(x, y) be a deterministic function representing the spatial

variation of the exposure on an imaginary plane located just in front

of the film to be exposed. Dividing the surface of this plane into

2
N cells of size a X a (see Fig. 2.5-1) and assuming that the spatial

variation of exposure is small within each cell, we denote by E.. the

exposure level within the cell (i, j).

F- 44
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Suppose M frames of a photographic film of a particular type

are exposed with the same exposure E(x, y) and after development

2
their surfaces are divided into N cells of size a X a. We denote by

rn th

D.. the optical density registered in the (i,j) cell of the m frame.
ij

m
Now, if photographic film were noise free, then D.. would have to be

1)

identical for m = ..... M because the exposure for all the frames is

the same. Denoting this common value by D.,, the input exposure F..

and D.. are related through the characteristic curve by

Dij = g(Ej . (2.5-3)

As we have seen, however, the film noise causes D.m to be different
ij

for each frame. Since the input exposure was the same for all of the

m
frames, then the M density Dij, m = 1.... M readings can be Laken

as Lhough they were M readings from a single frame uniformly ex-

posed with exposure E...

m
Letting D.. , m = 1.... M be samples from a random variable D..,

then D.. will be Gaussian distributed with mean D.. and standard

- 1/3deviation k(D..) , where k is a constant depending on the type of the
'3

film and the size of the cells. rhus a model reflecting the first two

moments of D.. would have the form

D.. = D.. n..
'3 t (2.5-4)

n...N(0, k2 (D..) 1)

k- D. 2/3
1
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In the above equation D.. is nonrandom and n.. represent the random-

ness (noise) associated with photographic system.

In discussions leading co eq. (2. 5-4) we assumed the input

exposure E(x,y) to be a deterministic function. rhe only randomness

was due to the noise n introduced by -he film. However in most prac

tical cases E(xy) is also random, so hat a general model for

the photographic film would have the form

D = g(E) (2.5-5)
5

D = D +n
2 2 (2.5-6)

nN(0, k 2(Ds
2 / 3

where in the subscripts (i,j) are dropped buL understood. Here E is

the input exposure, D is the resulting density in he absence of
s

film-grain noise, n is the noise and D is the observed density. The
o

quantities E, D, n and D are all random variables.
at 0

2.6 Linearity vs. Signal Dependence

rhere is a fair amount of confusion in the literature regarding the

so-called multiplicative nature of film-grain noise. From eq. (2. 5-6)

it is clear that film-grain noise can be modeled as additive noise.

However, this noise is signal dependent by virtue of its variance.

Alternatively, the additive nature of the noise can be sacrificed to

eliminate the signal dependence. In this case optical density can be

modeled as
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1/3
g' D= D + k(D) .n

0 s (2.6- 1)

ncN(0, 1)

where the noise n is Gaussian with zero mean and unit variance and is

statistically independent of the signal. Equation (2.6-1) now repre-

sents a nonlinear model. Note that the model of eq. (2. 5- 6) and thac of

eq. (Z.6- 1) are identical in the sense that the random variable Do

given D has the same first two moments in either model. Thes

difference is that in one model we have additive signal dependenm

noise whereas in the other model we have nonlinear observation with

signal independent noise.

In many estimation literature the term multiplicative noise is

strictly used to describe observations of the form

y = s.n (2.6-2)

where y is the observation, s is the signal and n is the noise. For

this reason we will not refer to film-grain noise of eq. (2. 6-1) as

multiplicative noise lest that be misleading.

the model of eq. (2. 5-6) might appear easier to work with

because of the additivity of the noise. However any advantage gained

due to linearity of the model is more than offset by the disadvantage

of working with signal-dependent noise. Thus in subsequent chapters

we shall use eq. (Z.6-1). rhis model was also suggesLed by Huang [17]

to model the random part of film-grain effects. Figure 2.6-1 shows
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the block diatgram for this model.

2. 7 Evaluation of the Model

rhe aim of this chapter has been the development of a model for

the image forming and recording system which can be used in

restoring images degraded by film-grain noise. rhe reliability of

any restoration scheme is directly related to the accuracy by which

the underlying mathematical model describes the actual physical

process.

Unfortunately there does not exist any well-defined or tractable

fidelity criterion by which various models can be evaluated or

compared. For this reason, we decided to test different models

according to the following procedure. A target was first photo-

graphed and the film developed. rhen a section of the film was

digitized using a small aperture. Next we simulated the same section

of the target in the computer according to the model which was to be

evaluated. Since any imaging model must simulate the physical

process, we subjectively compared the photographed and simulated

images to determine the accuracy of the model. rhere is no

mathematical optimality associated with this type of testing although

it is a reasonable procedure, especially for image processing

involving the human observer.

Figure 2. 7- la shows the target used for the evaluation. it

consists of two figure sevens cut out of white and red cardboard
50





which are then pasted on a black cardboard. Photographing this

target on a monochrome film produces an image with three levels.

This target was then attached to the side of a car as shown in Fig.

2.7-lb, and photographed at various distances using two different

types of film. One was the high speed Kodak rri-X film and the

other was Kodak Panatomic-X, a film with much slower speed.

Figure 2. 7-ic shows one of the photographs shot at a long distance

on a Pan-X film. Note that the number 77 is practically impossible

to see in this picture because the target of Fig. 2.7-la is mapped

into a square region of dimensions about 0. 5 millimeter on each side

on the negative of the photograph shown in Fig. 2.7-1c. This area

is much too small for the eye to resolve. Next, the negative of the

photograph shown in Fig. 2.7- Ic and a negative of exactly the same

scene recorded on a rri-X film were digitized using various small

apertures. In each case the digitized area was centered around the

number 77. Figure 2.7-2 shows three such digitized im-ages, all

consisting of 256 x 256 pixels. Figure 2. 7-Za is the Pan-X film

digitized with a 5 x 5 (pm. )2 aperture, and Fig. Z. 7- Zb is the same

2
film digitized with an aperture of size 2 x 2 (pm. ) . As predicted

by the denominator of eq. (2. 3-8), the image digitized with the

smaller aperture appears to be more noisy. Finally, Fig. 2. 7- 3 c

2
shows the Tri-X film digitized with a 2 x 2 (pLm.) aperture. Once

again comparing figures (b) and (c) we see that Fig. (c) is more noisy
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as predicted by eq. (2. 3-4). This results because the average

grain size a is larger for rri-X film than for Pan-X film.

We selected Fig. 2. 7-2b as one of the test targets to be used

in evaluation of the model shown in Fig. 2. 6-1. rhe two images used

for the evaluation are shown in Fig. 2.7-3. Figure 2.7-3a is the

actual photographed image and is the same image shown in Fig.

2.7-2b. rhe image simulated in the computer according to the model

of Fig. 2.6-1 is shown in Fig. 2.7-3b.

rhe question now is whether the simulated image gives the

same subjective impression as the actual photographed image. rhe

answer is clearly no. rhe edges of the sevens in the simulated image

are very sharp whereas they are quite blurred in the actual image.

rhe noise in Fig. 2.7-3b has the salt and pepper appearance whereas

in Fig. 2. 7-3a this is not the case. rhis comparison points out that

the model of Fig. 2.6-1 alone is not quite representative of the

imaging process. rhus it either needs to be altered or augmented.

2. 8 A Model for Image Forming and Recording Process

As discussed in Chapter I the process of recording an image on

a photographic film is a rather complex process. Not all the degrada-

tion is due to film-grain noise. rhere are other complex optical and

chemical effects that contribute to the degradation of the recorded

image that were neglected in the model of Fig. 2.6-1. Any accurate

modeling should account for these effects as well as the granularity
55

i



noise.

Around 1960, Kelly [18] suggested a three stage model which

included optical and chemical degradation effects, but ignored the

granularity effects. Later Lorber [19] proposed cascading a fourth

stage to Kelly's model to account for film-grain noise.

Combining these results with the discussion in the previous

seven sections of this chapter, a model of the form shown in Fig.

2.8-1 is suggested. In this figure, 1
1 (x,y) is the intensity of the light

reflected from the object and is incident on the image forming device

such as a camera. rhe first of four linear blurs in this model

represents atmospheric degradations such as turbulence as well as

limiting effects of the imaging system such as diffraction and

aberrations. The point-spread function for this linear blur is b (xy).

12 (x,y), the output of this initial block is the intensity distribution of

the light that actually strikes the film in the camera.

rhe second linear blur models optical diffusion effects such as

scattering and halation, during the formation of latent image. This

blur has a point-spread function b 2 (x, y). rhe middle segment of this

model is exactly the same as the model of Fig. 2. 6-1, and represents

the nonlinear characteristic function g as well as the nonlinear signal-

independent film-grain noise.

rhe third linear blur with point spread function b 3 (x, y) accounts

for degradations such as adjacency effects [19] which arise during
56



o L- 0

CC

022

a- c ~ G

CL- U

U a

GJ be

0~~ 0

WC

0. cA' 57-

.fG J .4 .4 .



the development of the film. Finally, the digitization process is

modeled by the fourth linear blur. rhe aperture of the scanner is

represented by point-spread function b 4 (x,y). The output of this

model is the observed digitized image D (i,j).0

ro evaluate this model once again we simulated the image

recording process according to it and compared the simulated image

to an actually photographed image. rhe results are shown in Fig.

2.8-2.

Figure 2. 8-2a is the actual image and Fig. 2. 8-2b is the

simulated image according to model of Fig. 2.6-1 accounting only

for granularity noise. Figure 2. 8-2c is the image simulated

according to the suggested model of Fig. 2.8-1.

Comparing figures (a) and (c) it is clear that the two images are

very similar. rhus it is our conclusion that th- model suggested in

Fig. 2.8-1 is a very reasonable model for describing the imaging

system.

Figure 2. 8-3 describes the detailed procedure for simulating

2. 8-Zc. We first started with a simulated ideal target which

resembled Fig. 2.7-la in size, shape and density. Next, this

256 x 256 image was blurred using a Gaussian blur of window 11 X 11

pixels and standard deviation 2. 0. Nonlinear Gaussian noise was

added to the blurred target in accordance with the model of Fig.

2.8-1 with the scanning constant chosen to be 0. 3. Finally, the noisy
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image was once again blurred with a Gaussian blur of window size

7 x 7 pixel and standard deviation 1.3 to obtain the final results.

It should be noted that if we wanted to simulate an image which

was digitized with a larger aperture, we would have reduced the

window size of the last blur function in order to get a better resembl-

ance with the actual image. This is done because adjacency effects

are not as noticeable in images digitized with large apertures.
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Chapter 3

ES rIMA rION

In this chapter the restoration of images degraded by film-grain

noise is considered within the context of estimation theory. In

section 3. 1 we investigate the applicability of some existing estima-

tors to film-grain noise restoration. Next, in section 3. 2, a linear

minimum mean square error (LMMSE) filter based on non-stationary

first order statistics of an image is developed. Finally in section 3. 3,

this filter is applied to one-dimensional and two-dimensional signals

and its performance is compared with conventional discrete Wiener

filter.

3. 1 Survey of Some Estimators

To compare and study the relevance of some existing estima-

tors to thc problem of film-grain noise restoration, let us establish

some notation. Let us denote the signal to be estimated by the

random sequence x, Px 2 I... I x ..... xN where xk is the signal at time

or position k. Similarly let yI PY2 , .... Yk....P YN denote the observ-

ation sequence with yk the observation at time or position k. Usually

Yk is a function of xk and a noise term n k which has caused the

degradation.
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We can generally write

Ykk) (3.1 I )

where f is a deterministic function. Equation (3. 1-1) is often

referred to as the observation model and as we shall discuss, the

implementation of the estimator designed to estimate x k based on

observation yk can vary greatly in complexity depending on the nature

of the function f.

One can classify various estimators as either batch processors

or recrusive estimators. A batch processor processes all of the

observations y, ... , yN at the same time and outputs the estimates of

x 1 .... xN all at once. On the other hand, a recursive estimator

provides an estimate for x based only on a small number of obser-
k

vations and past estimates. rhe procedure is then repeated to

produce an estimate for 'k 1 and so on.

If can be shown C1 that for a large class of cost functions the

best estimate (thebest in terms of minimizing the average cost) of

xk using observations Y. YZ is given by

xk = E xOy 1 ..... Y (3.1-Z)

where E denotes the ensemble average operator. In the above equa-

tion if L= k then xk is called the filtered estimate. If 1<k the esti-
kA

mate is called the predicted estimate and if 1>k, xk is called the

interpolated estimate of xk. In this last case where the estimator
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uses observations in the future to estimate the signal at the present,

the estimator is called non-causal. Obviously if a high degree of

correlation exists within the signal samples and/or within the noise

samples then a non-causal estimator always gives a better estimate

than a causal estimator because it uses more of the available

information. Clearly a batch estimator as we have defined it in this

section is a non-causal estimator. In most situations in image

processing, the quantity of data to be processed is enormous and

there are difficulties in implementing a batch estimator. To

illustrate this point, consider a digitized image consisting of 256 by

256 pixels. A general batch estimator will have to process over

65, 000 observations at the same time to produce an estimated image.

With the size of most digital computers this causes storage and

computational difficulties. By comparison, a recursive estimator

may or may not be causal, but in either case is usually easier to

implement because it uses a relatively small amount of data at any

given time to produce an estimate.

Both recursive and batch estimators can be subdivided into

linear and nonlinear estimators. rhe linear estimator produces an

estimate which is a linear combination of the observations.

As stated earlier, the optimal Bayesian estimate for a large

class of cost functions is given by
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x ExtyI (3. 1-3)

where y denotes the observation to be used for the estimate and x is

either the signal at time k or the entire signal sequence x1 , ... I

depending on whether the estimator is recursive or a batch estimator.

Using the definition of ensemble average we can rewrite equation

(3. 1-3) as

x = 'xP(xly)dx (3.1-~4)
x

where P(xI y) is the a posteriori probability density of x.

One can show that the estimate given by eq. (3. 1-3) is the best

estimate regardless of the functional relationship between the obser-

vation, the signal and the noise. However, if the function f in the

observation model of eq. (3. 1 -1) is nonlinear in signal and noise then

the calculation of the probability density function required to carry

out the estimate of eq. (3. 1 -4) can become very difficult. The general

problem of implementing the optimal estimator using nonlinear

observations still remains unsolved. rhe most recent work done in

this area is by Naraghi Ezi who proposes a sub-optimal algorithmic

estimation method applicable to nonlinear observations.

Even with many simplifying assumptions, estimation of images

degraded by film-grain noise, still involves nonlinear observations.

As discussed in the last chapter, D 0 the observed optical density of

the degraded image is given by
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D = D + kD P .n (3.1-5)
0 s S

where D denotes the recorded image in the absence of noise. In thes

above equation we have ignored all the optical and chemical degrada-

tions as well as the effect of the nonlinear H and D curve. We can

see that even for this very simplified case the observation is quite

nonlinear .and the optimal estimate of Ds as given by E[Ds IDo0 would

be difficult to implement. For this reason various investigators

have tried to find alternative solutions to film-grain noise restoration.

In the remainder of this section we consider some of the more recent

approaches to this problem to provide a background.

1. Maximum A Posteriori (MAP) Estimator

Recently Hunt [31 has considered image restoration based on a

model given in Fig. 3.1-1. rhis model is a much simplified version

of the model shown in Fig. 2. 8-1 of Chapter 2. Here the signal

dependence of the noise is ignored and the main emphasis is placed

on the nonlinear nature of the function g(. ). From Fig. 3. 1 -1 the

vector observation model

y = g([HI.x) + n (3.1-6)

canbe written. By ignoring the signal dependence of the noise, we see that

the nonlinearity in the observation model of eq. (3. 1-6) does not

include any cross-multiplication term involving the signal and the

noise, as was the case in eq. (3. 1-5), but rather is completely in
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terms of the signal component only.

Hunt argues that the Bayesian MMSE estimate of x given by

E[:XIy involves calculating the a posteriori density P(xly), which is

not simple due to nonlinear function g(. ), and instead decides on the

MAP estimate of x. this estimate is the mode of the a posteriori

density. Unlike E[xl y", which is the mean of P(xly), the MAP

estimate does not explicitly require knowledge of P(x i y).

In deriving his estimator equations, Hunt assumes that the

noise vector n in (3. 1-6) is wide-sense stationary and multivariate

Gaussian with stationary variation about a nonstationary mean x m

thus, the first two moments of x can be expressed as:

Ex = x (3.1 -7)
m

E[X-X x-x--Ti R- (3.1-8)
xx

where x is a variable vector and R- is a Toeplitz matrix. This is
m xx

a very reasonable description of most images and is superior to the

assumption of wide sense stationary [41.

The MAP estimate as derived by Hunt has the form

A A

XMAP =x + R-H SRI -g(H. (3.1-9)
m Xx b nn M AP )'

where
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bRu)u l=bl

1 0u

bub u 2 (3.1-10)
S =

0
bg(u)

and where
AA

[ HXMAP (3.1-11)

Equations (3. 1-9)-(3. 1-11) are a set of nonlinear vector equations

requiring a great deal of effort to solve. For a 100 x 100 image,

4 4R- is 10 x 10 matrix. Hunt uses Picard's iteration method toxx

iteratively solve eq. (3. 1-9).

An obvious drawback to Hunt's estimate is the over simplification

of his model as given in Fig. 3. 1 -1 on which the estimate is based.

In situations when the operation is on a linear region of the H and D

curve (see Fig. I. 2-1 of Chapter 1) the nonlinear function g of

eq. (3. 1-6) can be well approximated by a straight line. Hunt's

emphasis in the observation model is on the nonlinearity of this

function rather than on the signal dependence of the noise. To obtain

a solution in a reasonable time, the MAP estimator requires a very

large, fast digital computer.
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2. Wiener Filter

The Wiener filter in the Fourier domain is a classical linear

estimation technique applicable to stationary signals. Walkup and

Choens [51 use the principle of Wiener filter along with the obser-

vation model

D ( ;,1)) = D (F, 7) + kD 1/ f ).-n (F, 1) (3.1-121
0 s s

To derive a linear minimum-mean-square error filter given by

DD (wI1 W,2 )
W(willW 2 ) = D 2 2/3 (3.1-13)

f (w19w 2 ) + k E sD(F . ))1
s s

where fD D is the spatial power spectrum of the signal, E is the
s s

expectation operator and n is taken to be white noise with zero mean

and unit variance.

The filter W given by the above equation assumes images to have

stationary first and second order statistics. This assumption is not

very reasonable, particularly for first order statistics. In addition,

no optical and chemical degradations are included in the observation

model of eq. (3. 1-12) and filter W will only filter out the noise and

will not compensate for other degradations.

3.2 Optimal Discrete LMMSE Filter

the object of this section is to develop an optimal discrete

linear minimum-mean-square error filter. Before doing so however

we would like to list s-)me desirable features for such a filter:
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a) As discussed in chapter 2 and again in section 3. 1, the

observed optical density can be modeled by

D =D +kD - n (3.2-1)
0 s a

if only the effects of film-grain noise are considered and other

degradation factors are ignored. Note that even though the noise n

in the above model is statistically independent of the signal Ds, the

deviation of the observation D from the signal D is very much0 s

dependent on the signal level through the term kD . n. rhis deviation5

is more pronounced when the signal level is high and is less severe

when the signal level is low. Thus the filter designed to estimate Ds

based on the observation D should be aware of this fact. In other
0

words the filter should be adaptive in the sense that it should change

its characteristics to account for the presence of higher noise when

it is operating in a region where the expected signal level is high.

b) As pointed out in the last chapter, the process of recording

an image on film involves optical and chemical degradations in

addition to film-grain noise. We would therefore like the restora-

tion filter to compensate for these degradations while filtering out

the noise.

c) Most existing restoration filters are designed based on the

assumption that images are characterized by stationary first and

second moments. As discussed before, this is not a very realistic
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assumption, particularly in the first moment. 'ro demonstrate this,

Cannon and Hunt give the following argument [41]: Suppose one uses

several thousand pictures from Californis drivers' licenses in order

to calculate an ensemble mean image. Clearly such an ensemble

mean image would not consist of a uniform shade of gray indicating

stationarity. More likely, the mean image would consist of an

elliptical region where the face is expected to be and probably some

dark spots where the eyes, nose and other facial features are

expected to be. Thus images are generally nan-stationary in first

order statistics, and we would like to utilize this in the derivation of

the filter.

d) Since we are to process digitized images on digital computers

j * we would like the filter to be discrete.

rhe first two of the above desired properties can be immediately

incorporated in the restoration filter. In the model of Fig. 2. 8-1 for

the imaging system, the first and the last segments of the model

accounts for various degradations other than noise. In the middle

segment the nonlinear noise is inserted to reflect the signal-

dependence term in eq. (3. 2 -1). Thus if we derive the restoration

filter in accordance with this model, then both the a and the b

features mentioned in this section will be incorporated in the filter

* automatically.

ro obtain a discrete filter, we must sample the continuous model
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of Fig. 2. 8-1. Figure 3.2-1 shows the block diagram of the equival-

ent discrete model. In this figure I is a column vector of size N

representing the incident intensity which is the input to the imaging

system. rhe M x N blur matrix H represents the combined effects

of linear space-invariant blurs b 1 (x , y) and b2 (x, y) of the continuous

model. It is assumed that the operation is on the linear region of H

and D curve and thus the nonlinear function g(. ) of Fig. 2.8-1 is

approximated by a straight line. In the discrete model the slope of

this line is taken to be O. and constant vector B contains the intercept

point of this line for its elements. Vector N represents the noise.

It is multiplied by a M x M matrix F which is diagonal and has the

form

I P(di)
e 0

(d2 P
tF1 Ik e (3. 2-2)

0

L (d M) P _
e

where k is the scanning constant and di is the jth element of vector
e

D . Noise N is taken to be white, multivariate Gaussian whose firste

two moments are given by

E(N) = 0 (3.2-3)

CNN = E(.N) = I (3.2-4)

where [I1 denotes the identity matrix and E is the ensemble average
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operator. Note that matrix tFj is structured to conform ;ith the

scalar eq. (3. 2-1 ). rhe R x M matrix H2 represents the combined

effects of linear blurs b 3 (x, y) and b 4 (x, y) in the continuous model.

Finally vector D is the observed degraded signal. rhe restoration

filter should provide an estimate for the input signal I based on

observation D and some a priori statistical information. Denoting0

this filter by an N x R matrix tWi, the estimate will be given by
A

I= tWI . (3.2-5)

It has been shown t61 that the optimal filter has the form

[WI = [cT 11C-5 1 (3.2-6)
0 0 0

where the criterion of optimality is to minimize the expected value of

the square of the estimation error given by

IE
e =EI-)II) .(3.2-7)

Here (Cj 'I) and (C- 5 ) are the cross -covariance of the signal and
0 00

the observation and autocovariance of the observation respectively.

It should be noted that the filter [W] of eq. (3.2-6) is a linear non-

causal batch processor. No assumption of stationarity is imposed in

the derivation of this filter, and the general form as given by eq.

(3. 2-6) is independent of any underlying observation model. However,

the evaluation of the two covariance matrices requires the knowledge

of an observation model. We now devote the rest of this section to
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the evaluation of this filter according to the discrete model of Fig.

3.2-1.

A. Evaluation of [CT
0

Using the definition of cross covariance we have

Tr r
E C- E (ID F)-D D (3. 2-8)

IDoo m

where I and D are the nonstationary mean of the signal and the
m 0

m
observation respectively. From Fig. 3. 2-1 we can write

-50= H 2 (c{HIT+ T+ [F1 N) . (3. 2-9)

rherefore
r r

E(I D) Et I (otHlI + B+ [FIi )4H2 1IT. (3.2-10)

Now let us assume that the signal I and noise NT are independent,

i. e,

fr (i IPi, 0 0 0N;n, . n2 . .o. , n) f f(i 1 , 0 0 '1N ) f (nl , . . ., n)

where f is the joint probability density function of Iand N.Using
r 17

eq. (3.2-11) in eq. (3.2-10) we see that

E(I D) 0 OLE(I I )[ IT t2 T + Y Hi0 (3.2-12)

We now calculate the second term in eq. (3.2-8) namely
T

ro' From eq. (3.2-9) we have
ni o
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D EH)I (O[H1ITm +B) (3.2-13)
m

and therefore

r T

I D =O I I [H]T[H + I r[HIT (3.2-14)
mo mm mm

Using eqs. (3.2-12) and (3.2-14) in eq. (3.2-8) we obtain

[Cm ] = [C I[Hl IT[HZIT (3.2-15)
0

where [ C r 1 is the autocovariance of the signal I given by

T" _r

[C -[-I = Ell T ]-I I . (3.2-16)mm

B. Evaluation of [ CB Y Y
0 0

Using the definition of -'-ocovariance we have

T T

tC-n-n I = E(DD ) -D 1 D (3.2-17)0 0 0 0
0 0 m m

From eq. (3.2-9) we have

r
E(DD) = E ((-(H C[H I IHI + B + [F]).

([Hz] (a1H I + B + [F]N)TI, (3.2-18)

Carrying out the above ensemble expectation and considering the

independence of I and N we obtain

T r T TE (DoDo 0 [H 2 (a t[H1]E,(I- & 11T+FF + [C NINO +
0 - T N'' (3,.2-19)

[H]IT " + a.'Tm[Hl") [H1 7
m m278



where

T

CN,NI E E N [FjT]  (3. Z-20)

in the above equation. Equation (3.2-2) and (3, 2-4) indicate that

[CNINI has the following form

1 2PE(d ) 0e
[CNN, = k 2 E~d~e2 P  (3Zp1

2 E (d?-)d
[CCNIN 1= k e (3. 2-21)

0

E (d P
e

j thwhere d is the j element of vector D of Fig. 3.2-1. The second

term in equation (3.2-17) is D -D and this can be calculated
0 0

m m
using eq. (3.2-9) as shown below

T T -r
D D = [ 2 C [H1  I m mHI1 +BB +

m m T
o,[1QmB+oB ItHI] ).[Il 2 t] 1 . (3.2-22)

Finally using eq. (3.2-19) and (3.2-22) in eq. (3.2-17) we obtain

[c rY .5 [H21( L2 H [ ICrr [H 1 1T + CN') EH21r " (3.2-23)
0 0

rhese expressions for ICc- I and [CY T7 I indicate that the
0 0 0

filter [WI has the form

[WI O[CrrI1[H r (a [H I[Crr] [ 1411 + cNN,1) iHZ2T. (3.2-24)
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[he filter [W] appears to have the form of a conventional

discrete Wiener filter except for the presence of the blur matrix

[ti1., and more importantly, the structure of matrix [CN.N,]O From

Fig. 3.2-1 and eq. (3.2-21) we see that £CN.N ] is a diagonal matrix

whose diagonal is given by

Diagonal of [CNN,]= ck 2 - E([H1 ]I +iB)ZP. (3.2-25)

In Chapter 2 we discussed experimental results indicating that the

exponent P in the above equation is less than I and is more likely in

the range 0.3-0.4. If for the sake of simplicity we take P to be we

see that eq. (3. 2-25) reduces nicely to

Diagonal of [CNoN,l =k [H m +k 2B. (3. Z-26)

Equation (3.2-26) points out that the diagonal of the effective noise

covariance matrix [CNN,] is given by the scaled, blurred non-

stationary a priori mean of the signal I . It is exactly this feature

that enables the filter to operate adaptively based on a prior informa-

tion. Using the nonstationary expected value of the signal I to anti-

cipate the level of the signal, the filter recognizes regions where the

signal level is expected to be high as regions of high noise and filters

accordingly. Conversely if the signal level is not expected to be

high in a region, then the filter dous not filter as much. rhis is the

adaptive quality that we wanted to incorporate in the restoration filter.

80



In comparison, the diagonal elements of the covariance of the noise

matrix in conventional discrete Wiener filter are all equal. rhus

the filter assumes equal noise in all the regions, which as we have

seen is not the case for images degraded by film-grain noise.

Before applying this filter to some one-dimensional and two-

dimensional signals, we conclude this section by deriving an expres-

sion for the mean square error (mse) as given by
A A

mse = Trace(ER(I-I)(-I) 11 (3.2-27)

Using eq. (3.2-5) we have

mse = TraceEt(I-[WID)(0-EW I0)Tp (3.2-28)

and carrying out the above expectation we get

mse = Tracef[C-r- 2twltcrn nI+tcr n w1
0 0 (3.2-29)

where all the terms in the above equation have previously been

defined.

3. 3 Experimental Results

As a preliminary evaluation of the performance of the filter

derived in the last section we first applied it to a one-dimensional

signal. Figure 3. 2-2a shows the ideal signal corresponding to the

input signal T of Fig. 3.2-1. This signal is obtained from one line of

a typical digitized image, and the size of vector I is taken to be 128.
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(a) Ideal signal

(b) Blurred signal

Figure 3. 2-2. Simulation of degraded one dimensional signal.



We then degraded this signal in accordance with the model of Fig.

3.2-I. First, the vector I was blurred with matrix [H 11 which was

a Gaussian blur matrix with window of 5 elements and a m of 0. 9. The

result is shown in Fig. 3.2-Zb and corresponds to the vector E of

Fig. 3.2-1. Because the constant a and constant vector B act as a

scaling factors only, without any loss of generality, they were set

to one and zero respectively. Therefore in this simulation, the

vectors E and D of Fig. 3.2-1 are identical. A Gaussian signal-:! e

dependent noise was then added to vector D to obtain the signal De r"

shown in Fig. 3.Z-3a. The scanning constant k of eq. (3.2-2) was

taken to be 0.3, corresponding to a fairly noisy film scanned with a

very small aperture. Finally, vector D was blurred with matrix
r

[H.1 which was a Gaussian blur with a window of 3 elements and a c of

.5 to yield the observed signal D shown in Fig. 3. 2-2b. Thiso

signal was processed by the LMMSE filter derived in the last section
A

to yield an estimate I for the input signal 1. The estimated signal is

shown in Fig. 3.2-4b. Comparing figures (a) and (b) of Fig. 3.2-4

we note that the filter has filtered more in the high signal levels

-, than the low signal levels. Overall the calculated mean-square-

error was improved by a factor 2.5.

Note that in implementing filter [WI of eq. (3.2-24) one needs

* to know I and [ C--, the first two moments of the signal. In this
Im,

work [CT 1T was approximated by the covariance matrix of a
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(a) Nonlinear noise added

(b) Observed signal

*

Figure 3.Z-3. Observed degraded signal.
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(a) Observed signal

(b) Estimated signal

- Figure 3. 2-4. Restored one dimensional signal.

85



Markov process vector with first order correlation of 0.85. The

a priori ensemble mean of the signal was estimated at each point by

blurring the observed signal D with a very large window to obtain aO0

rather smooth spatial average curve that was then used for I This
m

procedure effectively approximates I by a local spatial average ofm

0

For the restoration of two-dimensional signals or images one can

arrange the pixels of the digitized image lexographically in a long

vector and then proceed in the same manner discussed above for

processing one-dimensional signals t81. The problem with this

procedure is that for a reasonable image of size 256 x 256 the result-

ing vector would have length 65, 536. Obviously, the manipulation of

vectors and matrices of this size becomes horrendous, even with

large digital computers. An alternative method is to break up the

image into small blocks and to process each sub-block individually.

Similarly one can consider rows and columns of the image as

separable one-dimensional signals and sequentially process the

rows to obtain one estimate and then sequentially process the columns

to obtain a second estimate. The final restored image is then a

combination of these two estimates [61 -[91, with the simplest com-

bination being the average. Note that both the block filtering or

sequential row and column filtering result in suboptimal estimates.

In this section we present an example of two-dimensional
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restoration using the sequential row and column processing approach.

However before doing so an important point needs to be mentioned.

Since we assume the image to have a nonstationary mean then the

a priori mean for various lines of the image are not all equal.

Equations (3.2-24) and (3.2-26) point out that every time the mean of

a particular row differs from the mean of the previous row, a new

covariance of the noise tCNINII must be calculated, in turn requiring

a new filter [WI to be calculated. Since any change in tICNINl

necessitates performing a matrix inversion in order to calculate the

filter (W] of eq. (3.2-24), this causes an imposing problem. rhis

problem is avoided by realizing that in most typical images of

interest the means of adjacent lines do not differ substantially unless

a sharp boundary is passed in going from one line to the other. Thus,

the following algorithm is used in processing two-dimensional signals:

When processing line j we compare the a prior mean for line j with

the mean of the previous line; if no substantial difference exists we

process line j with the same filter that was calculated for line j-l.

If, however, the difference between the two means is judged to be

considerable, then the new mean is used to calculate a new filter

which is then used to process line j.

Figure 3. 2-5 shows an example of the application of this filter

to images. Figure (a) shows the ideal image. The three density

levels are 0. 4 for the background, 1. 1 for the left hand square and
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1o 8 for the right hand square. The density for this image has a

fairly large dynamic range; thus the noise in the degraded image is

quite signal-dependent. Figure (b) shows the degraded image

simulated according to the model of Fig. 3.2-1. In this simulation

the initial blur is Gaussian with a window of 5 x 5 elements and ry of

0. 9. rhe final blur is Gaussian with a window of 3 x 3 elements and

o of 0. 5. the change in the a prior mean of the rows and columns

requires the calculation of four different filters, each using a different

mean for the matrix [C NoN1mean'

In Fig. 3. 2-5 note that the filter has done more filtering in the

two square areas where the noise is considerable. In the restored

image there is some degree of smoothing. This smoothing is an

inherent property of an estimator using mean-square error as the

optimality criterion.

rhe performance of this filter can be compared with that of a

conventional Wiener filter which ignores the signal-dependence of the

noise. rhe result of the comparison is shown in Fig. 3.2-6. Com-

paring the square regions in the two restored images we see that the

conventional Wi±.er filter does not filter these regions as well as the

other filter because it assumes the noise to be the same in all the

regions.
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Chapter 4

DETECTION I

In digitizing photographic films, it is sometimes necessary to

use very small apertures in the scanning microdensitometer in order

to detect fine details in the image. With these small apertures the

film-grain noise is so severe that the detection of fine details and

distinction between adjacent areas of small contrast becomes virtually

impossible. The noise can be reduced by using a larger aperture for

the scanner; however doing this will produce averaging over fine

details of interest in the image. Thus in most cases, the photograph

must be digitized using a small aperture and then improved by

effective enhancement and restoration techniques.

When scanned with apertures as small as 4 to 25 (p.m.) , the

digitized image is so degraded that conventional restoration techniques

employing linear or nonlinear estimators will have little effect. In

these cases heuristic but clever detection schemes taking the

properties of the human observer into account appear to be more

helpful than any estimation method. In this chapter we analyze an

enhancement method called "noise cheating" introduced by H. J.

Zweig et al. [1] and show that their work can be justified through

classical detection theory. The "noise cheating" algorithm is an

effective enhancement method for low contrast images having a small
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dynamic range.

To expand on this algorithm and make it applicable to a broader

class of images, and to develop new and more flexible algorithms of

this type, we must provide a justification for the heuristic nature of

the "noise cheating" algorithm. Without such justification, further

expansion on the idea beyond the heuristic procedures becomes

impractical. Thus, this chapter is devoted to analysis of "noise

cheating" algorithm within the framework of detection theory. In

the next chapter we improve this algorithm so that it is applicable to

a broader class of images. We will also develop a Bayesian

detection method which is considerably more flexible than the "noise

cheating" algorithm.

The "noise cheating" method in essence functions as a two-

stage detecting procedure. A detailed analysis of this two-stage

procedure is discussed in the rest of this chapter.

4. 1 Enhancement by rwo-Stage Maximum Likelihood Detection

Assume that in the absence of grain-noise, the section of

photograph to be scanned is composed of M extended regions RI,...,

R M all of them of much larger size than the scanning aperture and

each of them having a uniform density. Denote by D I , .. .. DM the

density levels of these M regions and assume the image is extremely

low contrast so that values of D1 , . I. DM are very close.

Suppose this film is scanned with a small square aperture of
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size 2 a X Za. If a is on the ord(:r of I - 3 Pm., then the M regions

will no longer be distinguishable from one another in the digital

image due to severity of the noise and the low contrast. Thus some

sort of enhancement is necessary.

To begin our analysis of the "noise cheating" algorithm, we

start with a set of simplifying assumptions. Though unrealistic,

these assumptions will facilitate the understanding of the nature of

the algorithm and once this understanding is reached these assump-

tions will be dropped.

rhe first assumption is that we know a priori that the image

consists of exactly M distinct regions, even though we cannot make

out all of these M regions in the degraded image. We also know the

density levels of these regions; thus we assume a priori knowledge of

values for D1 . D

Based on each single reading of the scanner (each single reading

of the scanner corresponds to a pixel in the digitized image) we

want to decide if the reading was taken when the densitometer

aperture was completely in one of the M regions or if it was taken

with the aperture overlapping two or more of the regions. If this

decision can be made, then by changing the value of each observed

pixel to the density of the detected region, some of the noise effects

should be suppressed.

ro achieve this, we formulate the problem as the following M+l
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hypothesis detection problem. Corresponding to each single reading

produced by the scanner, we denote by HIP H21..., HM the hypothesis

that the reading was taken with the scanner's aperture completely in

regions R , R 2 , ... RM respectively. Let H M+ denote the hypothesis

that the reading was taken with the aperture overlapped by two or

more regions. Figure 4.1-1 illustrates these hypotheses.

As we discussed in Chapter 2, the output of the scanner is a

function of the mean density of the region scanned and the granularity

noise. Denoting the scanner's output by y, we write

y = g(D,n) (4.1-1)

for the observation.

Detection of hypotheses HI, .. , H by a maximum likelihood
M+l

detection scheme with y as the observation is equivalent to announc-

ing hypothesis Hk if

f(yH k) > f(yIH i  i = l,...,M+l (4. l-Z)

i k

where f(yjH.) is the conditional probability density of y under hypo-
1

thesis H. [21 . Therefore, the evaluation of these M+I conditional1

probability densities are required for detection.

Guided by the results of Chapter 2, for the first M hypothesis,

the conditional density can be readily written
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Position of the aperture
corresponding to hypothesis H,

R2

Position of the scanning aperture
corresponding to hypothesis HM+I

Figure 4. 1-1. Position of the scanning aperture under
various hypothesis.
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f(IH e y-Di)? = 1.... M (4.1-3)
1

where

. = 1/3 (4.1-4)
i

However f(yjHM+l) is far more complicated. In general we

can write

-u[Y-(CL DI +CL2 D 2 + ... +MDM)f/2aM+l)
f(Y jH M l = - . I e1 1 2

M+l (4. 1-5)

where 0 < . <1. the exact form of this conditional density depends on
I

a.'s which in turn depends on the number of regions and the amount
1

of overlap in each as shown in Fig. 4.1-1. It is clear that no unique

expression for f(y HM+l) can be written because there are an infinite

number of expressions for this conditional density depending on

different combinations of L. 's. In fact, the set containing all the
1

possible expressions for this densityis uncountable. Therefore,

carrying out the maximum likelihood detection test as indicated by

eq. (4. 1-2) becomes impossible.

To avoid this problem, let us consider a suboptimal detection

procedure. We perform the detection in two stages. In the first

stage we ignore the overlap hypothesis HM+l and assume that all the

readings were taken with the aperture completely in one of the M

regions. We then perform M hypothesis maximum likelihood
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detection on the image based only on hypotheses H1 ,...,H H

In the second stage we examine the detected image and in areas

where hypothesis H M+1 appears very likely to have occurred (i.e.

the boundary of the M regions) we refine the details of the image

according to another algorithm.

rhe net effect is that we accurately define the coarse features of

the image, i. e. the rough boundaries of the M extended regions, in

the first stage and sharpen the edges in the second stage.

4. 2 Detection by Quantization

In this section we consider the first stage of the algorithm just

discussed and see how it can be implemented by a simple quantization.

In the previous section we made the assumption that there is a

small difference between the density levels of different regions. We

can therefore rewrite eq. (4. 1 -3) as

f (Y fl 1 -[(y -Di) 2 /2( 2

where a.i has been replaced by *We can choose 0 to be

k = (D) 1 /3 (4. 2-2)

where D may arbitrarily be taken as the mean value of the D Ts 'hus

we have used the low contrast of the image to omit the dependence of

7 on the DI's and thus in effect neglect the signal-dependence of the

noise.
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Without loss of generality, we assume that DI <D 2 <...<DM

It can now easily be shown that the maximum likelihood detection

rule of selecting Hk if

f(yIHk) > f(YIH i ) i = I,...,M (4.2-3)

i k

is the same as selecting Hk if and only if

Lk <y <Lk+l (4.2-4)

where Lk and Lk+I are given by

L k- (4.2-5)

D k + D k+ 1

L - k k (4.2-6)

These equivalent statements become clear by a simple inspection

of Fig. 4.2-1. Equations (4.2-3) to (4.2-6) also point out an interest-

ing fact. If we quantize each pixel of the degraded image with a

quantizer whose quantization levels are placed at density levels D,

i = 1, ... , M and whose decision levels are placed at half way between

the density levels at

=I = 2, .,M (4.2-7)
2

then in effect we perform the maximum likelihood detection as

described by eq. (4.2-3). Therefore the first stage of detection can

be implemented by quantization of the degraded image with the

quantizer described above.A. 99
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Let us now evaluate the performance of the quantizer by

examining the quantized image at the end of the first stage. Suppose

in digitizing the image we select the Za X Za aperture of the scanner

such that the resulting noise standard deviation as given by

o = ka × __ (D)1/3 (4.2-8)

is no more than 1/4 of the difference between the two closest D. s.1

rherefore all D.'s would be at least 40 apart. Selection of the aper-1

ture under the above condition would thus imply that the decision

levels of the quantizer used in the first stage would be at least 20 to

each side of their corresponding quantization levels as seen in Fig.

4.2-2.

Since pixels in the degraded image belonging to region R. are
1

Gaussian distributed with mean D. and standard deviation a, then

roughly 95% of the readings taken by the densitometer from region R.

will be in a band 20 to each side of D. and therefore will be sub-

sequently quantized to D..
1

Due to the properties of Gaussian distribution [3], this means

that after the first stage of detection, 95% of the interior points of

each region will be correctly detected and restored.

4.3 Probability of Correct Detection in the First Stage

In the previous section we saw that with a probability of 0. 95 the

interior points of uniform density regions are correctly detected and
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Figure 4. 2-2. The quantizer used in the first stage of the
detection.
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restored to the right density. rhese results are conditioned on the

selection of an aperture for "he scanner so that the noise standard

deviation a is no more than 1/4 of the difference between two closest

D. Is.

From eq. (4. 2-8) we see that the standard deviation of the noise

is inversely proportional to the scanning aperture. Suppot e we

digitize the image with a larger aperture such that the resulting noise

standard deviation is only 1/6 of the difference between the two

closest D. Is. This means that the decision bands of the quantizer

now extend to at least 3 a to each side of the quantization levels. Due

to the Gaussian distribution of the scanner output, the probability of

correct detection for the interior points of each region increases to

0. 97 with this larger aperture.

From the above argument it is clear that as the aperture size

is increased, the distance between the quantization levels increases

(in terms of ar) and the probability of correct detection increases for

the interior points. rhere is a tradeoff, however, because the large

aperture will average over a large area to produce a single reading,

thus destroying some of the fine detail at the boundaries of the M

regions.

A smaller aperture preserves more information about the edges,

but also decreases the probability of correct detection for the

interior points. To illustrate this point, suppose we use a smaller
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aperture resulting in a noise a which is 1/Z the difference between

the two closest D.Is. Again following the same line of argument, weI

see that the decision bands of the quantizer used in the first stage are

now only Za wide or one a to each side of the quantization levels.

therefore the probability of correct detection for the interior points

is only 0. 67.

A compromise can be reached by using two different size aper-

tures. A large aperture of size 2 a x Za can be used in the first stage

of the detection. The size of this aperture will be selected so that the

distance between any two D.Is is at least 4a and thus the probability of1

correct detection for the interior points is a high 0. 95.

As we said before, the second stage of the detection is designed

to compensate for the omission of hypothesis HM+1 in the first stage.

Recall that this situation occurs when the aperture overlaps two or

more of the extended regions. Clearly this hypothesis is the most

probable when the scanner is digitizing areas around the boundary

of the M extended regions.

Since we have detected the interior points of each region at the

end of the first stage with low probability of error, we have roughly

outlined the boundaries of the extended regions where hypothesis

HM+l is most likely to have occurred. The second stage of the

detection should thus involve a closer examination of the regions

which have been designated to be boundary areas by the first stage.
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In the next section we show how these areas may be redigitized with a

smaller aperture to improve resolution.

4.4 Second Stage of the Detection

After the first stage of the detection and prior to the second

stage involving boundary operations, all isolated points are removed

from the detected image. An isolated point is defined to be a pixel

having a value which is different from all of its closest eight

neighboring pixels. In removing the isolated pixel the value of the

isolated pixel is changed to conform with that of its neighbors. rhis

is justified because we assume the picture to consist only of extended

regions several times the size of the scanning aperture. Trhus we can

conclude that any isolated pixel was erroneously detected.

J After the first stage we define a pixel to belong to a boundary

if one or more of its eight closest neighboring pixels have been

detected to have a value different from it. Since hypothesis H M is

most likely to have been true at the boundaries, all the boundary

points need to be reexamined.

rhe reexamination is achieved by redigitizing the photograph

with a smaller aperture at the areas which have been designated

to be boundaries by the first stage. rhis new data is used to improve

the resolution.

Suppose the smaller aperture is of size a x a and thus is only

1/4 of the size of the aperture originally used. This would mean that
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for each single pixel produced by the scanner during the first digitiza-

tion, we now obtain four readings. :: We can now use the newly

obtained data to sharpen the boundary. An algorithm used by Zweig

et al. 1] is explained below by an example.

Referring to Fig. 4 .4-la and allowing each small square to be a

pixel in the digitized image, suppose that after the first stage we have

roughly outlined four regions having densities 0. 6, 0. 75, 0. 8, and

1.1. According to our definition, the center pixel with value 0.8 is a

boundary pixel and has to be reexamined. By redigitizing with a

smaller aperture of 1/4 of the size originally used, we obtain 4 new

readings corresponding to this one pixel as shown in Fig. 4.4-lb.

We replace the pixel with these newly obtained data as shown in

Fig. 4.4-1c. Now once more we have to decide to which one of the

regions these new pixels should be assigned. At this point an

interesting point can be raised. Equation (4. 2-8) points out that the

new data obtained by redigitizing the photograph is twice as noisy as

*In practice there is no need to physically scan the image twice,
once with each aperture. It suffices to scan the image with the
smaller of the two apertures. rhen the computer can be used to
perform a 2 x 2 averaging on the digital image to effectively
obtain what we would have obtained had we actually scanned the

image a se,:ond time with the larger aperture.
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Corresponding 4 pixels
A boundry pixelI in the small aperture

scanned image

1.\ 1.1 1.1 .75 .75

1. 1.1 .8 .75

.11.1 .8 .8 .75 I

111.1 .8 .8 .75

.61.6 .6 .6 .6

(a) Large aperture (b) Small aperture
scanned image scanned image

1. 1. 1. -7 .7 1.- 11 -. -. 5 -7

1.1 1.1 1.1 .75 .75 1. 1 1. 1 1 .1 .75 75

1.1 1.1 .09.8 .75 1.1 1.1 .8 .8 .75

1.1 1.1 .8 .8 .75 1.1 1.1 .8 .8 .75

.6 .6 .6 I6 .6 .6 .6 .6 v6 .6

(c) The edge pixel (d) Final result
replaced

Figure 4. 4- 1. Second stage of the detection.
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the data which was used originally in connection with the first stage

of the detection. This occurs because the scanning aperture is

reduced in size by 1/4. Therefore a logical question is to ask how

the noisier data can be used to sharpen the boundaries detected

using data less noisy.

One possible answer is now described. In the first stage, after

observing each pixel in the degraded digitized image, we had to

decide to which one of M regions the pixel should be assigned. In

the second stage, even though we are using noisier data, we no

longer need to consider all of the M regions in order so assign the

small pixels to the correct value. We need only consider the

immediate vicinity. This point can be made clear by the example of

Fig. 4.4-1. In Fig. 4. 4 -1c there are four new observations having

values 1. 0, 0. 89, 0. 7 and 0. 9. Note that after the first stage we

have already made a determination that the area these 4 pixels

occupy lies at the boundary of the two extended regions having values

1.* 1 and 0. 8. Therefore with these new four data points we have only

to decide to which one of the two regions, 1. 1 or 0. 8, we should

assign the new pixels. This is in contrast to the first stage where

we decide between M regions in assigning each pixel. In other

words, in the second stage we do conditional detection in the sense

that in reassigning each boundary point we consider only the regions
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on whose boundary the point lies.

rhe actual reassignment can be done according to different

criteria. One possible choice is according to the absolute value of

the difference. For example in Fig. 4.4-ic of the 4 new data points,

pixels having 0. 89, 0. 7 and 0. 9 are assigned to the region having

density 0.8 while the fourth pixel having value 1. 0 is assigned to the

region density 1.1. Comparing Fig. 4.4-la and 4.4-id we see how

the data from the second digitization of the photograph is used to

modify and sharpen the boundaries between regions having densities

0.8 and 1.1. Similarly all other boundary points should be reworked.

rhis finishes explanation of the basic structure of the algorithm.

However, if the complete algorithm is to be useful, in practice, some

of the unrealistic assumptions that were made in the derivation must

now be dropped. This is done in the next section.

4. 5 Detection with Unknown Signal Levels

In the previous analysis we assume that the degraded image

consisted of exactly M regions with uniform densities, even though

the regions could not be identified exactly. We further assumed that

the density levels of these regions were known a priori. Clearly

these assumptions are not realistic. In this section we intent to omit

these assumptions and reexamine the detection algorithm discussed

earlier in the chapter.

We will retain the basic two stage structure of the detection
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algorithm. In the first stage we use a quantizer to implement the

detector and use as observations the data obtained by scanning the

film with an aperture of size Za x 2a. the second stage is not

altered because all the assumptions that we are going to relax affect

the first stage only. Recall that the quantization levels of the quantiz-

er used in the first stage were set at density levels D., i = 1 .... M

which were assumed known. Since we no longer are going to make

this assumption, we need to restructure the quantizer to be used in

the first stage.

As before, we assume that the images are composed of sever l

extended regions each having a uniform density. We assume that

the number of these regions and their density levels is not known,

however we do assume that the image has very low contrast. We

examine low contrast images because they are particularly vulnerable

to film-grain noise.

ro construct a quantizer for use in the first stage, we begin by

arbitrarily choosing a quantization level Q0 Having set this quantiza-
0~

tion level, we place other quantization levels above and below Q0 such

that they are exactly four noise standard deviations apart. Since the

image has low contrast, one can approximate the standard deviation

of the noise by

k2  1/3 (4.5-1)

TZax~aD
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where the density D can be taken to be the sample mean taken over the

entire degraded digitized image.

Let the quantization levels thus obtained be denoted by

QLP.Q- 0000OPQ Q2 Q

where the difference between each successive pair is 4G. The actual

number of quantization levels depends on the expected dynamic

range of the image density. As discussed in Chapter 2, for almost

all classes of images the density will vary in the range of 0. 0 to

2. 5, therefore we arbitrarily select 0 somewhere in this range and

then place other quantization levels 4a apart until this range is filled

up.

Having set the quantization levels, we set the decision levels at

the mid-point between each pair of quantization levels. Thus all the

decision bands are 40 wide. We have now constructed a quantizer

without any.a priori knowledge.

Now we investigate the consequence of utilizing this quantizer in

the first stage of the detection algorithm discussed earlier and

following it with the second stage which is left unchanged.

As an example, suppose we digitize a small section of a photo-

graph by scanning it with a very small square aperture of size ZaXZa.

rhe digitized image will be degraded with a film-grain noise having

standard deviation a as given by eq. (4. 5-1). Suppose the section



of the photograph that we have scanned is composed of four extended

regions R I , R2 , R 3 and R4 with unknown boundaries and unknown

uniform densities D 1 , D2, D 3 and D4 . If the image has low contrast,

these four regions will be indistinguishable from one another in the

digitized image due to the small size of the scanning aperture and

enhancement is necessary.

We now apply the two stage detection algorithm using the

quantizer discussed in this section in the first stage. To fully

understand the nature of this algorithm let us assume that in construc-

ting the quantizer, it just happens that DI, the density level of region

RV, coincides exactly with quantization level Qk" Assume also that

D 2 , the density level of region R2 , happens to be one a greater than

quantization level Q k and that D 3 and D4 happen to be Zo and 3C

greater than Q respectively, as shown in Fig. 4.5-1.
k

Using this quantizer, all pixels in the degraded image having

values between Lk and Lk- 1 will be quantized to Q On the other

hand we know that pixels in the degraded image belonging to region

R are Gaussian distributed with mean D and standard deviation (Y

Therefore, since D I coincides with Q k and since Lk and Lk-l are 20

to each side of Q k then upon quantizing the degraded image 95% of

pixels belonging to region R l will be quantized to D while 2. 5% will

be quantized to Qk+ and another 2. 5% will be quantized to Qkl.
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Figure 4. 5-1. Structure of the quantizer when standard
deviation of the noise is n.
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Fhus after the first stage only 5% of the pixels belonging to region R l

are erroneously assigned to the wrong density.

As outlined before, we remove all isolated points after quantiza-

tion and prior to the second stage. For a pixel in region R 1 to be an

isolated point after the first stage, it should be an erroneously detected

pixel surrounded by 8 pixels which have correctly been detected to

have value D,. Thus the probability of a pixel being an isolated point

is (.95) 8 or roughly 0.66. Thus, by removing all isolated points

from this region, of the original 5% falsely detected pixels,0. 66x5% =

3.3% are corrected to have value D 1 leaving only 1.7% misclassified

pixels in the interior of this region prior to second stage of the

detection.

In the second stage of processing the edge pixels are reworked.

Because 1.7% of the pixels have values other than D within the

interior of region R 1 , then all these pixels and their 8 closest

neighbors will qualify as edge pixels. Therefore 9 x 1.7 or about

15% of the pixels in region R1 will be redetected using data obtained

by scanning the photograph a second time with smaller aperture size

axa. Of the 15% reworked pixels some will ultimately be redetected

to have value D 1 thus bringing the probability of correct detection in

region R1 to well over 0.85.

rhe above completes analysis of the performance of the detection
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algorithm for regions having a density which just happens to coincide

with a quantization level of the quantizer used in the first stage of

the algorithm. However, since the quantization levels are placed quite

arbitrarily, it is not very likely that many regions in the image will

have a density that will coincide exactly with a quantization level.

rhus it is more interesting to consider the fate of regions R2 , R 3 and

R4 which have densities that fall between two quantization levels

rather than on any particular one.

We first consider region R2 . rhis region has a density level

D2 which exceeds quantization level Qk by one a and is less than

quantization Qkl by 30. Since degraded digitized image pixels

belonging to region R 2 are Gaussian distributed about mean D with

standard deviation a, and since decision levels L and L of the

quantizer are 3a and one a away from D2 respectively, then upon

quantization, 84% of the pixels in R 2 will be quantized to Qk while

16% will be quantized to Qk+1 .

After quantization a pixel, quanti2ed to Qkl has a (.84) 8 or .25

probability of being an isolated point. Meanwhile a pixel quantized to

Qk has (. 16) 8 or about zero probability of being an isolated point,

rhus in the process of removing isolated points, .25 x 16% or about

4% of pixels originally quantized to Qkf1 will be changed to Qk

therefore, prior to the second stage of the detection, 88% of the

interior points of region R2 are given value Qk while the remainingk "115
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12% are given value Qk+1*

In reexamining the boundary pixels in the second stage of the

detection, the 12% pixels having value Q and their 8 closest

neighboring pixels will be considered boundary pixels. rhus

9 x 12% = 98% or roughly the entire region R will be reexamined in

the second stage.

Recall that in the second stage we use data obtained by scan-

ning the film with a smaller aperture of size a x a to rework the bound-

ary pixels. Clearly in region R 2 this new set of data will once again

be Gaussian distributed with mean D but now with standard deviation

T
I which is twice as large as a from eq. (4. 5-1).

Since pixels in region R 2 after the first stage of detection have

values Qk or Qk+l' the newly obtained data will be assigned value

Qk or Qk+1 depending on the absolute value of the difference

between the observed data and these two values as expiained in

section 4.4. Referring to Fig. 4.5-1 we note that in the new set of

data, pixels with a value greater than Lk will be closer to Qk+l

while pixels with a value less than L k will be closer to Q Now

since Lk is ri'/Z away from D2 , from Gaussian distribution properties

it is clear that 31% of pixels in the new data will be greater than Lk

and thus will be quantized to 0 k+ while the other 69% will be

assigned value Qk" rhus in the final detected image, region R2 will

be composed of pixels of which 69% have value Qk and 31% have value116



Following the same line of argument we used to analyze regions

R 1 and R 2 , one can show that in the final detected image region R 3

will consist of pixels having value Q k 50% of the time and value Qk+1

the remaining 50%. Region R 4 will then be composed 69% of pixels

with value Qk and 31% with value Qk' rhus various regions will be

coded into various percentages of quantization levels.

4. 6 Effectiveness of the Algorithm for Enhancement

At first one might question the usefulness of this detection

algorithm. In the case just discussed, we detect in region R 3 about

50% of the pixels to have value Qk and the other 50% to have value

Qkil' while in reality all the pixels in this region have a value exactly

half the distance between Q k and 0k+1 . Thus the probability of error

in this region is 1. However in image detection involving the human

observer the primary goal is distinction between regions of different

density levels rather than the density value itself. Therefore the

conventional detection error probability is not indicative of the

performance of this detector.

ro see that this algorithm accomplishes the goal of image

detection, consider the case just discussed in which region R3 is

surrounded by region R1 as shown in Fig. 4.6-1a. Since the image

pixels in region R 1 are detected to have value k about 90% of the
I k

time while pixels in region R3 are detected to have value Q 50% of the
k 117
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time and value Qk+l the other 50%, the two regions will be easily

distinguishable from one another in the detected image. rhis is due

to the fact that human eye can easily separate regions having such a

significant difference in structure. The experimental results of the

next chapter will bear this out.

Referring to Fig. 4.5-1 we see that the density levels of regions

R and R 3 are 2r- apart. To better understand the algorithm, suppose

we construct our quantizer so that D1 happens to fall one Qbelow

quantization level Qk rather than on Qk as assumed earlier, and that

D falls one y above 0 In the final detected image we will find

that region R 1 is detected as having value Qk 69% of the time and

value Qk-l 31% of the time, while in region R 3 the percentages are 69%

Qk and 31% k" In this case both regions have value Qk 69% of

the time and the eye will not be able to distinguish these two regions

as easily as before because their structures are not sufficiently

different.

rhe structures of these and all other regions in the final detected

image can be changed by shifting the quantization levels by a small

amount. In section 4.4 we initially selected quantization level 0

arbitrarily and then placed other levels such that adjacent pairs were

4(7 apart. As discussed in the example of Fig. 4.6-lb the mean

densities of various regions relative to these quantization levels in

the image might fall in locations so that some adjacent regions would
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get coded into a very similar percentage of quantization levels and

thus not be sufficiently distinguishable from one another in the final

detected image.

If we shift the original quantization level 0 by one a this means

that all quantization levels are shifted by one a and the location of

mean densities of various regions changes relative to these new

quantization levels. Since it is the relative distance between the

quantization levels and the mean densities that determines how regions

are coded into various percentages of the quantization levels, then

the appearance of the final detected image varies substantially as

the quantization levels are shifted. One can repeatedly shift the

quantization levels by small intervals until the human observer is

satisfied with the final result.

In the discussion above we have allowed the human observer to

be in a feedback loop in order to improve the final results. Naturally

there are some cases where image restoration techniques have to be

designed so that they are capable of processing hundreds of degraded

images in a very short time. In such cases one obviously cannot

insert the human observ _r in the feedback loop because of insufficient

time for individual inspection of each restored image. However

such volume processing is seldom encountered when the primary

goal of restoration is the elimination of film-grain noise.

Before concluding this chapter we should give some insight into
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selection of the aperture for the scanner. The selection of

appropriate size aperture is of utmost importance and there are two

main factors to consider. The most obvious one is the size of the

smallest object one expects to find in the section of the film being

scanned. If one is looking for objects of size 40 ( im.)2 the size of

the scanner aperture must be considerably smaller than 40 (m.)

2
more likely on the order of 4 (pm.) . This is done so that the scanner

will not average over a large portion of the object.

the second factor to be considered is the contrast of the adjacent

regions. If we hope to distinguish two adjacent regions whose

densities are different by 61D, we should select our aperture such that

the resulting noise standard deviation is no more than 6D 2 to insure

that the density levels of these two regions are at least Zr5 apart and

therefore upon quantization they are not often assigned to the same

quantization levcl in the final detected image.
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Chapter 5

DErEC TION II

In Chapter 4 we used the fundamentals of detection theory to

provide a framework to analyze the "noise cheating" algorithm. In

this chapter we use the same framework to develop more versatile

algorithms.

In the last chapter we considered a class of low contrast images

with small dy; imic range. The assumption of small range for the

optical density enabled us to omit the signal-dependence of the noise

and take ca, the standard deviation of the noise to be invariant over

the entire image. Many images have a large dynamic range in

density, yet have regions of local low contrast. In such cases,

ignoring the signal -dependence of the noise affects the performance

of any detection scheme adversely.

We start this chapter by modifying the detection scheme discussed

in the last chapter to obtain a detector which takes into account the

signal-dependence and thus is applicable to a broader class of images.

In the second half of this chapter we develop a more versatile

Bayesian detection scheme enabling us to accommodate any a, priori

knowledge available.
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5. 1 A Detector for Signal-Dependent Noise

The need for considering signal-dependence in film-grain noise

restoration of images with dynamic range, becomes clear by examin-

ing the signal-to-noise ratio (SNR) of the degraged image.

In a local portion of an image when the mean density is D we can

define signal to noise ratio to be

D2
SNR (D) (51I

SD

where rD is standard deviation of the noise. We equivalently can

write

D 1 4/3
SNR (D) 1/32 D

(kD I ) k

Let us consider a Kodak Pan-X film which has been scanned with

2

a 4 (1im.) aperture. The scanning constant k for this film and this

size aperture is roughly 0. 6. Now suppose that there are two

regions in the digitized image, one having mean density of 0.2 and

the other having mean density of 2. 2. Calculating the SNR for these

two regions, from eq. (5. 1-2) we have

SNR(.2) - (.2)4 1 = 0.319 (5.1-3)
(.6)

and

SNR(Z.2) - I (Z. 2) 4 3 = 8.478. (5.1-4)
(.6)
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Thus in this case SNR for the two regions of this image varies by

a factor of 26 and there is a definite advantage in considering the

signal-dependence in processing this degraded image.

With the above motivation, we now describe modifications to the

"noise cheating" algorithm discussed in the last chapter in order to

incorporate the signal-dependence effects. In section 4.4 we out-

lined a procedure for the construction of a quantizer utilized in the

first stage of the two-stage detection scheme. In constructing this

quantizer we place the initial quantization level Q0 arbitrarily. The

other quantization levels are then uniformly spaced at 4 a intervals

when a, the standard deviation of the noise, is assumed to be a

constant for all the various regions in the image. In quantizing the

degraded image with this quantizer we can make the following

remarks:

a) If a region in the degraded image has a density whose value

coincides with a particular quantization level, then roughly 90% of

the pixels in this region are correctly detected and their values

changed to the density of the regions.

b) If a region in the degraded image has a density whose value

falls in between two quantization levels, then after quantization all

the pixels in this region are assigned a value from one of the two

quantization levels.

Both of the above statements depend on the condition that all decision
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levels for the quantizer are Zri away from their quantization levels.

Equation (2. 3 -10) points out that rT, the standard deviation of the

noise, is a monotonically increasing function of the mean density.

rhus if we insist on placing the quantization levels of the quantizer

4- apart, consistently, then after arbitrarily selecting the initial

quantization level the other levels should be spaced successively

wider as we move toward high density values and successively

smaller as we move toward zero density. In the last chapter we

were able to place the quantization levels at uniform spacing be-

cause we assumed that the images of interest had a very small

dynamic range and thus cT varied very little from one region of the

image to another. If a quantizer with uniformly spaced quantization

levels is used to detect an image with a large dynamic range, the

effects will be:

* a) Adjacent regions in the degraded image having very small

densities that are not substantially different will be detected as the

same region because the distance between the quantization levels is

far more than the deviation of the pixels in these regions from their

mean densities.

b) Regions with high densities will be erroneously quantized to

several levels because in the degraded image some pixels in these

regions deviate from the density of the region by more than the

distance between the decision levels of the quantizer. This will
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cause a region of a uniform density to appear in the detected image

as a region having several densities.

In order to avoid these effects we must make sure that the

quantization levels of the quantizer are consistently 4a apart, where

is allowed to increase with the mean density according to eq.

(2. 3-10). Accordingly we decide on the following procedure to

construct the quantizer. We place the initial quantization level

arbitrarily at 0. The next quantization level greater than Q0 is

denoted Q1 and is found such that

QI QO 2CQo + 2Q (5.1-7)

where

= kQ )/3 (5.1-8)
Q 0 0

and

l = k(Ql 1 / 3  (5.1-9)

Combining eq. (5.1-7) wvith eqs. (5. 1-8) and (5. 1-9) we get

01 Zk(Q 1 ) - Q 0 R(Q = 0 (5.1-10)

or equivalently

3 3aO + (3a 2 + 8k 3 - = 0 (5.1-11)

where

CL =Q +Z27_ . (5.1-12)
0 
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Since Q0 is known, thena can be calculated from eqs. (5. 1-8) and

(5. 1-12). Evaluation of 0 1 thus involves solution of the third order

equation given by (5. 1 -11). rhis equation has a deterministic

solution t1l of the form

01 = A+B-ta (5.1-13)

where

A j -R~ (5.1-14)

and

B 3 1 -q r-(.-5

and where
3 2

R + (5. 1-16)

P 60L - 8k (5.1-17)

2q = -8ak . (5.1-18)

After Q is found, we repeat this procedure to find Q,' 03 and

so on until a quantization level exceeds the upper bound of the

expected dynamic range for the optical density of the image. In

most cases, this is less than 2. 5.

We can also follow the same procedure to find quantization levels

less than Q0. For example, Ql' the first quantization level smaller

than Q0 can be calculated

Q0 -0 22"0  (5.1-19)
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We continue finding levels Q_,, Q- etc. until we get a quantization

level which is smaller than zero. Because the standard deviation

as calculated from

o = k(Q) 1 /3 (5. 1-20)
0.1

becomes extremely small as Q. approaches zero, there will be an

infinite number of closely packed quantization levels near zoer. ro

avoid this, we may decide a priori that below a certain level, say 0. 3,

we abandon this procedure and set all the quantization levels at a

uniform spacing of 40*, where c. is obtained from eq. (5. 1-20) and

Q. is the first quantization level greater than or equal to 0. 3.1

Figure 5.1-1 shows a set of quantization levels obtained accord-

ing to this procedure with the scanning constant k = . 12 and the initial
quantization level Q0 = 0.4.

As discussed in section 2 of chapter 4, we would like to find a

set of decision levels for this quantizer corresponding to maximum

likelihood detection of regions whose mean densities happen to

coincide with one of the quantization levels. Consider decision level

Lk which is to be placed in between quantization levels Qk and Ck 1 .

Any two regions in the degraded image having mean densities equal

to Qk and Q k+ will have pixels which are Gaussian distributed

about mean Qk and Qk+l with standard deviations k and bk+l as

given by eq. (5. 1-20). rhe graphs of these two Gaussian probability
128
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Figure 5. 1-1. An example of nonuniformly spaced
quantization levels.
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distribution functions will intersect one another at a point h where
2

(TQ2 2
k+l k Q k+l Q k Q l

h= 2 2 (5.1-21)

CrQ 'YQ
k+1 k

and where

/(Q Q )2I- k Z n( UQk l ')(T k O.? a Q (5 1- 2
Qk+l1

Note that A is always positive, so that h will always have two real

solutions of which only one lies between Qk and k+l" A Gaussian
2

probability density with mean Q+, and variance rnG  lies above a
kI Q k

Gaussian distribution with mean Q and variance for all pointsk Qk

greater than h and will lie below this function for all points less than

h. Accordingly, we set the decision level Lk at h so that quantization

with this quantizer corresponds with maximum likelihood detection

in the sense described earlier. Figure 5.1-2 shows a pair of

quantization levels and their corresponding decision level obtained

according to the above procedure.

rhe two-stage detection algorithm now involves quantization of

the degraded image with a quantizer constructed according to the

procedure outlined in this section. As before, the rough boundaries

of various regions in the image are detected. rhis is followed by a

second stage of detection which is exactly the same as that described

in section 4.4.
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Figure 5. 1-2. An example of placement of a reconstruction

level which corresponds to maximum likelihood
detection.
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rhis algorithm was applied to degraded images and some exper-

imental results are presented at the end of this chapter.

5. 2 Bayesian Detector

In the last section we discussed an algorithm which performs

a form of suboptimal maximum likelihood detection using a

quantizer with nonuniformly spaced levels. In this section we start

with the same nonuniformly spaced levels except we now develop a

more flexible Bayesian detector to replace the quantizer.

To begin, briefly reivew M-hypothesis Bayesian detection from

classical statistics. A detection model is usually composed of the

four separate spaces as shown in Fig. 5.2-1.

I) Space &. This is the set of all possible signals, and may be

continuous or discrete. Elements of this space are denoted by D.

rhe a prior probability distribution over the signal space is given by

f (D), so that

J f (D)dD = 1 . (5. 2-1)

I) Space V. rhis is the set of all observabled. In the termin-

ology of communication theory, a transmitted signal DE.& becomes an

observation veV due to the noise. This space is described by a

conditional probability density fV(vID), which is the probability of

observing v, given a particular signal D. This density also satisfies

132

- - - - - - - - -- -.- E~* ~ ~ --



CL,

0.
CL

0-c.
4-
0)

0

0~0
.- 1

0-o
_-4

4-)

00

-014

CL tie

'4 u

CD~rla

on133



.V f V  
= 1. (5.2-2)

III) Space %(. rhis is the hypothesis space. Elements of W

are various hypotheses regarding which signal D was transmitted. A

particular observation v leads to the selection of an HeW(.

IV) Space ?. This is the action space. In general we may

observe a v and instead of deciding on a particular hypothesis

H.4(, we may decide on several hypotheses but with a probability

distribution assigned to them. Elements of the space R9 are

probability distribution functions and are denoted by r(Hiv). rhey

denote the probability distribution over the space V when v is

observed. Elements of R are called rules.

In addition to the above four spaces, there are usually three

other notions that complete the detection model. rhey are:

i) Cost. rhis is denoted by C(D, H). It is a real valued function

defined on space .&xA which gives the cost of deciding on hypothesis

H when signal D was transmitted.

ii) Risk. This is denoted by R(D, r) and is defined by

R(D,r) 4= r r C(D, H)fv(vID)r(HIv)dHdv. (5.2-3)
Vf 1 V

rhis expression describes the average cost when a particular signal

D is transmi -d and we use rule r to decide on our hypothesis.

iii) Average risk. rhis is described by
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R (r) ~ R(D, r)fD)dD (5. 2-4)

and denotes the average risk associated with selecting a particular

rule r. rhe averaging is performed over the signal space.

rhe Bayesian detector is a particular detector that observes v

and decides on a rule r such that the average risk R(r) is minimized.

A special case of this model is when we limit the hypothesis

space V to only M elements H l .... H M . In this case we divide the

signal space into M regions R 1 .... RM as shown in Fig. 5. 2-2.

Hypothesis H. then corresponds to the assumption that the transmitted1

signal is from region R.. Denoting by P(Ri) the a p probability

that a signal might belong to region R. and by fh(DIR i) the a priori

conditional probability of the signal within region R. we have
1

M
f(D) = i P(Ri)f (DIR.) " (5. 2-5)

One can show that in the case the minimization of the average

risk results in the following detection procedure for a Bayesian

detector. We calculate

A.(v) = P(R i ) ,R C(DH.)fv(vID)fDIRi)dD (5.2-6)

R .

j
j = 1,.o,M

then we announce hypothesis Hk as being true if

135



0)0

0

0

U

4)
$4

X :3

CYC

136



A k(v) < A.(v) i = l,...M . (5.2-7)
k

Some simplifications can be made if we use the cost function

S0 if DeR.

C(D, H.) = 1 J (5. 2-8)I if DR
3

rhis is a very reasonable cost function which does not penalize

correct detection. For this cost function eq. (5. 2-6) reduces to

M
A. (v) = P(R)f fV(v ID)f (D I R)dD (5.2-9)R . i

i Ri~j

From eq. (5.2-9) it is obvious that the test rule described by

eq. (5. 2-7) can equivalently be stated as: for each observation v

announce hypothesis Hk as being true if

B k(v) > Bi(v) i = l....M (5.2-10)

i ~k

where

B.(v) = P(R.)R fV(vID)f (DIR.)dD. (5.2-11)

With this background we now apply the Bayesian detection theory

to our previous problem. Suppose we decide on M nonuniformly

spaced levels in the density range of say [0. 0, 2. 51 as discussed in

the last section. rhese levels are selected so that the distance

137

k .



between them increases as we move up in the interval (0. 0, 2. 5.

Let us denote these levels by D .... D ,D M .  The detection algorithm

discussed in section 5.1 involves maximum likelihood detection of

regions in the degraded image having mean densities coinciding with

one of these levels. The detection was implemented by using a

quantizer in the first stage and followed by a second stage as dis-

cussed in section 4.4. Keeping the second stage of the detection

exactly the same, we now change the first stage from maximum

likelihood detection to Bayesian detection. In order to do this we

start by defining regions R 1 ,. .. , RM corresponding to the model

of Fig. 5.2-2. Referring to Fig. 5. 2-3 we let D 1 ..... D M be the

nonuniformly spaced levels discussed earlier. We also define M

intervals of width 6

R. [D - -
, D = l,...,M (5.2.12)

ii

where A is an arbitrarily small number. Now, corresponding to the

detection model of Fig. 5.2-2, let the signal space be

M
.R. . (5.2-13)

In the last section we labeled these levels by .... Q ",Q 0
Q$ ... as they were also to denote quantization leves oP the
quantizer used in the first stage of the detection algorithm.
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In the enhancement problem the observable is the degraded image

and pixels in the degraded image correspond to elements of observa-

tion space V. rhe enhancement procedure involves examining each

pixel in the degraded image and deciding, according to eq. (5.2-10)

which interval R. it most likely belongs to. rhe value of the

observed pixel is changed to D. if it is decided that the pixel1

belongs to region R..I

Corresponding to the signal space h defined inneq. (5. 2-13)

we can rewrite eq. (5.2-11) as

i 2

Bi(v) = P(Ri) fv(vjD)f (DIR.)dD (5.2-14)

Vj 2

where fv (v D) in the above equation is thf- conditional probability

density of the observable v given that the signal was D. As noted

in Chapter 2, when the observable is an image degraded by film-

grain noise then this conditional density is Gaussian with the form
1 "[(v -D) /(?.a ]

f (v1D) =e (5.2-15)

where

1/3
= k(D) I  . (5.2-16)

Thus if a priori probabilities P(R i ) and f (DIR) are known, for

each observed pixel value v in the degraded image, one can evaluate

the following integral
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D. + =-(v=D)2/(2kD/3
D1+ 2 Z2Z/3.

B (v) P(R.) i- 1/3 e

.f&(DIR.)dD (5.2-17)

for i = 1..., M and then according to the detection rule stated in

eq. (5. Z-10) change the value of the pixel to one of the M levels

D ..... DM

Since the detection procedure is to be carried out on a digital

computer, evaluation of the integral of eq. (5.2-17) for each pixel

of the image becomes quite time consuming. Therefore in practical

use, the following simplifying assumptions are made:

I) We assume that if the signal D belongs to region R. then it is
1

equally likely to be anywhere in that interval. Thus we let

De V [D .i - , VPDi +A ]

f (DIR.) (5.2-18)

0 elsewhere

2) If A is small, one can approximate aD in eq. (5.2-14) by

A 1/3

=FD D k(D.) (5.2-19)

for all D belonging to R.V That is we neglect the signal dependence1

of the noise within each interval. Note, however, that we allow the

variance of the noise to vary from one interval to the next.

Incorporating these two assumptions in eq. (5.2-17) we get
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D +2 2 2/3P(R) Di 2 e -[(v-D) )/(Zk D. /5.-0B(y) - F Ti3 e dD. (5.2Z-20)
JZT kDD i

Recognizing the integral in the eq. (5. 2-20) as an error function

(erf), it has the closed form solution

P(R.) r v-D +  V -D i -
-

B. (v) e r erD. / (5.2-21)

which reduces the evaluation of the integral to a table look up.

In summary, the Bayesian detection algorithm involves the

evaluation of B.(v) for i = 1, ... ,M of eq. (5. 2-21) for each pixel ofI

the degraded image and subsequent detection according to the rule

stated in eq. (5. 2-10). The boundaries in the Bayesian detected

image are then sharpened according to the procedure described in

section 4.4.

5. 3 Relation of the Bayesian Algorithm to the Noise Cheating
Algorithm

In section 4. 5 we noted that the "noise cheating" algorithm

suggests the use of the human observer in a feedback loop to shift

the quantization levels by a small amount to obtain different detected

images. This would be done if the detected image had poor visual

quality for a particular set of quantization levels. In fact this

procedure can be repeated any number of times and the weighted sum

of the various detected images can be taken to be the final enhanced

image. In this section we show that under certain conditions,
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performing the Bayesian algorithm once is equivalent to performing

the "noise cheating" algorithm many times by shifting the quantiza-

tion levels within a band of width A .

If a particular choice

f (DIR.) = 6(D-D.) 5.2-Z2)

is made in eq. (5.2-11) we obtain

B.(v) i = P(Ri)f v(v I)D (5.2-23)

Furthermore, if we allow all regions in the signal space to be

equally likely (i.e. P(R 1 ) = P(R 2 )... P(R M)), then the detection

rule of eq. (5.2-10) reduces to deciding on hypothesis Hk if

fV(vIDk) > fv(vJD i = l,...,M (5.2-24)

i k

which is the same as the maximum likelihood detection rule of eq.

(4. 1-2) used in "noise cheating" algorithm. We can now observe

that choosing the a priori conditional probability density function

f (DIR.) be a general probability density function then Bayesian

algorithm is equivalent to a "noise cheating" algorithm in which we

have allowed the quantization levels to vary within a band of width A

about D = i = 1,..., M and where all the detected images obtained due

to this shift of quantization levels are weighted by fh (DIR ) to obtain

the final enhanced image.
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5.4 Experimental Results

In this section we apply the different detectors discussed in this

and the last chapter to some degraded images and compare their

results.

Figure 5.4-la shows a simulated block U used as the ideal image.

rhe density levels for this image are 0.4 for the background, 1. 72

for the U and 1. 65 for the open slot in the U. rhis image of size

512 x 512 was chosen because it has a reasonably large dynamic

range (0.4 to 1. 72) and regions of very low contrast (the difference

between the density of the U and the open slot in the U is only 0.07).

In addition this image is composed of extended regions and this is

of the type for which the algorithms discussed in the last two

chapters are most useful.

rhis ideal image was degraded according to the model of

Fig. 2.8-3 to obtain the image shown in Fig. 4.4-lb. Figure 5. 4 -1c

shows the detected image using the "noise cheating" algorithm with

the initial quantization level set at 0.4 and the other levels uniformly

set at 4a spacing where

1/3 1/3
a k(D) = .3(.4) . (5.4-I

Although some of the noise is removed by the algorithm, the

result is difficult to identify. This points out a deficiency of the

"noise cheating" algorithm in ignoring the signal-dependence of the
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noise in enhancement of images with large dynamic range.

Figures 5.4-Zc and 5.4-3c show respectively the result of

applying the algorithm developed in section 5. 1 and the Bayesian

algorithm to the same degraded image. The block letter U is now

recognizable in these pictures. Comparing Figs. 5. 4 -Zc and 5.4-3c

with Fig. 5.4-1c one sees the advantage of these algorithms over

the "noise cheating" scheme.

Considering the extreme degree of the degradation, these

techniques do a good job of identifying and enhancing the image

features. It seems unlikely that conventional linear or nonlinear

estimation techniques can produce better quality enhanced images

than those shown in Fig. 5.4-Zc and 5.4- 3 c.

We also displayed the degraded image on the

and tried to adjust the brightness and the contrast knobs to see if the

image could be enhanced so that the letter U would become visible

on the screen. However due to extreme degree of degradation no

amount of adjustment did the job.
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* Chapter 6

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE RESEARCH

This dissertation has described different means of restoring

images degraded by film-grain noise. We have used some experi-

mental and theoretical results by photographic scientist to augment

existing mathematical models for imaging systems with film as the

recording medium. rhe modeling has two primary objectives which

sometimes are conflicting. rhe first objective has been to obtain

a mathematically tractable model for subsequent estimation and

detection of the degraded observed image. The second objective

* has been to achieve an accurate model for the physical process. A

subjective test has been devised to check for the accuracy of the

* model. Chapter 2 of this dissertation concludes with a particular

mathematical model which is a reasonable representation of

various effects of imaging process without being oversimplified.

However more work in the area of modeling remains to be

done. We mentioned in Chapter 2 that the standard deviation of the

form given by eq. (2. 3-10) is not consistant with the assumption of

Gaussianity of the noisy for high and low density values. ro fully

understand the nature of the distributing of the noise, one needs to

expose many samples of different films uniformly and digitize them
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with a microdensitometer using various apertures. rhe success of

such a procedure depends greatly on the ability to produce truly

uniformly exposed samples. In past researchers doing such studies

have used only 500 to 1000 points in determining the statistics of the

noise. For accurate assessment many more points should be

considered and statistical tests should be applied to insure that the

estimates are consistent and accurate. With the improvement of

microdensitometers, availability of digital computers and improve-

ment in instrumentation, examining uniformly exposed films may

finally provide some conclusive results regarding the form and the

distribution of film-grain noise.

Another unexplored area in which fruitful research may be

conducted is the study of the sensitivity of human vision to film-

grain noise in various ranges of density. For example one can

perform experiments similar to Weber's experiment Ill to deter-

mine the just noticeable contrast over a wide range of densities

when the image is degraded by the signal-dependent film-grain noise.

The results of such a test may be used to improve imaging system

models by including the effects of the human visual system for

enhancement and restoration.

In Chapter 3 we have presented a linear estimation technique

which accounts for signal-dependent noise. the method is shown to

be superior to conventional Wiener filtering. rhis area can be
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further explored by considering nonlinear estimation. We have

obtained the general problem of restoration of images degraded by

film-grain noise in the framework of estimation theory and have

shown the optimal solution to be an estimate based on nonlinear

observations. The optimal estimate based on nonlinear observations

is still an unsolved problem in the field of estimation theory. The

most recent work in this area is due to Naraghi Ezi, who proposes

a suboptimal recursive estimate for nonlinear observations. An

interesting area for future study is the application of Naraghi's work

and other nonlinear estimation techniques to images degraded by

film-grain noise.

In Chapters 4 and 5 we have concentrated on the detection of a

class of low contrast images degraded by severe film-grain noise.

An already existing algorithm called "noise cheating" has been

analyzed in the context of detection theory. Other algorithms are

developed based on the same principle which are applicable to a

wider class of images and are more versatile. These detectors

produce fairly reasonable results when other conventional restoration

methods are ineffective for extremely severe noise.

In these detection schemes each individual pixel in the degraded

image is detected independent of the neighboring pixels. A future

study might explore the possibility of detecting a pixel based on the

result of the detection of the surrounding pixels using the correlation
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among the pixels.

From the results of this study, it seems certain that future for

image restoration, especially with signal-dependent noise, lies in

the use of nonlinear techniques. It still remains a challenge to find

efficient algorithms for rapid, high quality restoration on pictures

with only a moderate amount of noise, and it is hoped that the results

presented here will contribute to the development of these algorithms.
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